

Choosing the Right Spectrometer

Review: Main Messages of the Week

The scattered neutron flux $\Phi(Q,h\vec{\omega})$ is proportional to the <u>space</u> (r) and <u>time</u> (t) Fourier transform of the <u>probability</u> $G(\vec{r},t)$ of finding one or two atoms (*spins*) separated by a particular distance (*angle*) at a particular time.

$$\Phi \propto \frac{\partial^2 \sigma}{\partial \Omega \partial \omega} \propto \iint e^{i(\vec{Q} \cdot \vec{r} - \omega t)} G(\vec{r}, t) d^3 \vec{r} dt$$

Conservation of Momentum and Energy

NCNR

$$\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_f$$
$$\Delta E = \frac{\hbar^2 k_i^2}{2m} - \frac{\hbar^2 k_f^2}{2m}$$

 $\mathbf{Q}_C = \tau + \mathbf{q}$

Other Probes

$$E_{neutron} (meV) = 2.0719k^{2} = 81.7968 / \lambda^{2}$$
$$E_{photon} (keV) = 2.0k = 12.4 / \lambda$$
$$E_{electron} (eV) = 3.8k^{2} = 150 / \lambda^{2}$$

$$1 meV = 11.6 K (k_BT)$$

$$1 meV = 8.06 cm^{-1} (E/hc)$$

$$1 meV = 0.2418 THz (E/h)$$

$$1 meV / \mu_B = 17.3 T (E/\mu_B)$$

Reciprocal Space for Thermal Neutrons

RH Scattering Plane Normal to $\begin{bmatrix} 0 - 1 & 0 \end{bmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 &$

Reciprocal Space for Powder

Ground State Inelastic Magnetic Scattering

BT-7

Q (Wave vector (1/A))

Inelastic Spectrometers

Thermal triple-axis instruments (BT-7) (BT-4)1 meVCold neutron triple-axis instrument (MACS) (SPINS)250 μ eVS(Q,E)Disk chopper time-of-flight spectrometer (DCS) (FANS)250 μ eVHigh flux backscattering spectrometer (HFBS)1 μ eVS(Q,t)Spin-echo spectrometer (NSE) δ t \Rightarrow ~50 neV

Remember – Intensity Resolution †

All these different spectrometers are designed differently to optimize intensity and resolution for different measurement requirements

Crystal Spectrometers: Specifying \vec{k}_i and \vec{k}_f

Bragg Diffraction
 BT7, MACS, HFBS
 S(Q, E)

SPINS	(Cold Triple Axis)
BT-4	(Thermal Triple Axis and Filter Analyzer Spectrometer)
BT-1	(High Resolution Powder Diffractometer)
BT-8	(Residual Stress Diffractometer)

Magnetic Scattering from La(O,F)FeAs

PSD or BT-7

C. de la Cruz, Q. Huang, J. W. Lynn, J. Li, W. Ratcliff II, J. L. Zarestky, H. A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, and P. Dai, Nature **453**, 899 (2008).

Polaron Dynamics in CMR La_{0.7}Ca_{0.3}MnO₃

J. W. Lynn, D. N. Argyriou, Y. Ren, Y. Chen, Y. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B**76**, 014437 (2007)

T dependence

BT-7 using the PSD

Energy Resolution for Crystal Spectrometers

• $E = C(2\pi/\lambda)^2$

• $\Delta E = C' / \lambda^3 \delta \lambda$

Cold Neutrons → higher resolution

Reciprocal Space for Cold Neutrons

MACS twenty points at a time; high flux horizontal focused monochromator

Spin Liquid Scattering in $ZnCu_3(OD)_6C_{12}$

Tian-Heng Han, Joel S. Helton, Shaoyan Chu, Daniel G. Nocera, Jose A. Rodriguez-Rivera, Collin Broholm, and Young S. Lee, Nature **492**, 406 (2012).

Perfect Resolution Backscattering

Note: Scattering angle = 2θ

$$\Delta \lambda = 2d_M \cos(\theta_M) \Delta \theta_M$$

Thermal TA	1,000 μeV
Cold TA	200 µeV
HFBS	1 μeV

HFBS

Quantum Rotational Tunneling in Toluene: A Measurement using HFBS

Motion of methyl groups (CH_3) in toluene ($C_6H_5CH_3$)

Inelastic peaks correspond to tunneling through a potential barrier: <u>a classically</u> <u>forbidden motion!</u>

Tunneling rate ~6 GHz

• Presence of two inelastic peaks on the energy loss side and two peaks on the energy gain side indicates two inequivalent sites for molecules in the solid

Methods of Specifying and Measuring \vec{k}_i and \vec{k}_f

- Bragg Diffraction (Crystal Spectrometers) d
 BT7, MACS, HFBS
 S(Q,E)
- 2. Time-of-Flight (TOF) DCS S(Q,E)

Disk Chopper Spectrometer

Fractional Spin Excitations in Yb₂Pt₂Pb

L. S. Wu, W. J. Gannon, I. A. Zaliznyak, A. M. Tsvelik, M. Brockmann, J.-S. Caux, M. S. Kim, Y. Qiu, J. R. D. Copley, G. Ehlers, A. Podlesnyak, M. C. Aronson, Science **352**, 1690 (2016).

Example: DCS versus BT7

Rules of Thumb: (think carefully before violating) DCS, MACS – systems requiring resolution < 400 μeV BT7 – single crystals (or diffraction)

Methods of Specifying and Measuring \vec{k}_i and \vec{k}_f

- Bragg Diffraction (Crystal Spectrometers) d f
 BT7, MACS, HFBS
 S(Q,E)
- Time-of-Flight (TOF)
 DCS, HFBS S(Q,E)

"TOF" Larmor Precession

NSE

S(**Q**, *t*)

Spin Echo Spectrometer

$$t = \frac{L}{v}$$

$$\phi = \omega t = \frac{\gamma B L}{v}$$

Spin Echo Data

Polarized Neutron Scattering Data (BT7, MACS)

Coupled Magnetic and Ferroelectric Hysteresis in Multiferroic $Ni_3V_2O_8$, I. Cabrera, M. Kenzelmann, G. Lawes, Y. Chen, W. C. Chen, R. Erwin, T. R. Gentile, J. B. Leao, J. W. Lynn, N. Rogado, R. J. Cava, and C. Broholm, Phys. Rev. Lett. 103, 087201 (2009).

How do I Choose the Right Spectrometer?

Two basic considerations:

- 1. What are the time scales (E) of interest?
- 2. What are the length scales (Q) of interest?

(Some spectrometers overlap \rightarrow the choice may boil down to one of resolution)

Two additional considerations:

- 1. What energy resolution (ΔE) is required?
- 2. What momentum resolution (ΔQ [or ΔQ]) is required?

Different Spectrometers Cover Different Regions of Phase Space

Rules of Thumb

1. What are the energies ($\hbar\omega$), i.e. time scales ($\Delta t \sim 1/\omega$), of interest?

 $\hbar \omega > 1-100 \text{ meV}$ - use a thermal triple-axis spectrometer like BT7.

 $\hbar \omega < 30 \mu eV$ - use HFBS or NSE.

In between - use MACS or DCS or a cold-neutron triple-axis spectrometer like SPINS.

2. Make sure that the length scales L of the relevant motions lie within the range of the spectrometer. For example, consider the HFBS. (Q ~ $2\pi/L$)

$$Q_{min} = 0.25 Å^{-1} → L_{max} \sim 25 Å$$

 $Q_{max} = 1.75 Å^{-1} → L_{min} \sim 3.5 Å$

REMEMBER - \mathbf{Q}_{min} and \mathbf{Q}_{max} are <u>inversely</u> proportional to the incident neutron wavelength

More Rules of Thumb

NCNR

Is your sample polycrystalline or amorphous?

Does ONLY the magnitude (not the direction) of **Q** matter?

Is the expected Q-dependence of the scattering weak?

This often means that you want to look at a large region of $Q-\hbar\omega$ space, or that you can sum the data over a large region of $Q-\hbar\omega$ space.

YES? Consider instruments with large analyzer areas.

NO? Consider using BT7, SPINS, or NSE.

HFBS

BT7

General Sample "Design"

Other considerations:

What's the structure (in a general sense)?

Are there any phase transitions (or a glass transition)?

What isotopes are present?

Supplementary data from other measurements ...

Magnetization vs T

Muon spin relaxation

X-ray data

Specific heat vs T

Raman spectroscopy

General Sample "Design"

Try to avoid isotopes that are strongly absorbing.

 $^{6}Li \ ^{10}B \ ^{113}Cd \ ^{157}Gd$

For a complete listing go to

http://www.ncnr.nist.gov/resources/n-lengths

Sample "Design"

Single crystals yield the most information.

Increase the intensity by increasing the amount of sample.

If you have a powder, use a cylindrical container (rather than flat plate).

Annular may be the best sample geometry.

Almost all experiments of collective excitations involve coherent scattering \rightarrow If sample contains H it should be deuterated (D).

Acknowledgements

Organizers – Yamali Hernandez & Alex Grutter

Administrative staff Experiment teams Invited speakers

Enjoy the Science!