Choosing the Right Neutron Spectrometer

Dan Neumann
NIST Center for Neutron Research

dan@nist.gov www.ncnr.nist.gov
Main Messages of the Week

• Neutron scattering experiments measure the number of neutrons scattered by a sample as a function of the wavevector change \(Q \) and the energy change \(\eta \omega \) of the neutron.

• Expressions for the scattered neutron intensity involve the positions and motions of atomic nuclei or unpaired electron spins.

• The scattered neutron intensity as a function of \(Q \) and \(\eta \omega \) is proportional to the space and time Fourier transform of the probability of finding one or two atoms separated by a particular distance at a particular time.
What is required to do an inelastic neutron scattering experiment

1. A source of neutrons
2. A method to prescribe the wavevector (k_i) of the neutrons incident on the sample
3. A well-chosen sample
4. A method to determine the wavevector (k_f) of the scattered neutrons
5. A detector

\[
\begin{align*}
\text{momentum} &= \hbar k \\
\text{energy} &= (\hbar k)^2/(2m) \\
Q &= k_i - k_f \\
\hbar \omega &= E_i - E_f
\end{align*}
\]

NSE measures $|\Delta k|$ directly by attaching a “clock” to each neutron.
Methods of specifying & measuring k_i and k_f

1. Bragg Diffraction
 SPINS, FANS, Backscattering

2. Time-of-flight
 DCS, Backscattering (??)

3. Larmor Precession
 Spin Echo
Why are there so many different spectrometers?

Neutron scattering is an intensity limited technique. Thus the detector coverage and resolution MUST be tailored to the science.

Uncertainties in the neutron wavelength and direction imply that Q and $\eta\omega$ can only be defined with a certain precision.

The total signal in a scattering experiment is proportional to the resolution volume i.e. better resolution leads to lower count rates.

Courtesy of R. Pynn
Different spectrometers cover different regions of phase space

- SANS
- Reflectometry
- Diffraction

- Filter Analyzer Spectrometer
- Time of Flight Spectrometers
- Backscattering Spectrometers
- Triple Axis Spectrometers
- Spin Echo Spectrometer
Things to consider
Things to consider

Is your sample polycrystalline or amorphous?
 Does ONLY the magnitude (not the direction) of \(Q \) matter?

Is the expected \(Q \)-dependence of the scattering weak?
 This often means that you want to look at a large region of \(Q-\eta\omega \) space
 or that you can sum the data over a large region of \(Q-\eta\omega \) space

If YES, consider instruments with large analyzer areas
 (FANS, DCS, Backscattering)
Things to consider

Now consider the energies ($\eta \omega$) or time scales of interest ($\delta t \sim 1/\omega$)

- $\eta \omega > 10$-20 meV - use FANS (or some other spectrometer designed for vibrational spectroscopy)
- $\eta \omega < 20$-30 μeV - use Backscattering
- in between - use DCS (or some other cold neutron TOF spectrometer)

BUT – check to make sure that the length scale of the motions that you’re interested in is within the range of the instrument. As a simple example of this, consider the Backscattering spectrometer. ($Q \sim 2\pi/L$)

\[
Q_{\text{min}} = 0.25 \text{ A}^{-1} \Rightarrow L_{\text{max}} \sim 25 \text{ A} \\
Q_{\text{max}} = 1.75 \text{ A}^{-1} \Rightarrow L_{\text{min}} \sim 3.5 \text{ A}
\]

REMEMBER - Q_{min} and Q_{max} are inversely proportional to the incident neutron wavelength
Things to consider after choosing DCS

Quantities varied
- wavelength λ
- chopper slot widths W

Remember – Intensity ↓
Resolution ↑
Sample “Design” for DCS & Backscattering

Does the sample contain H?

Remember: Neutrons LOVE H!!

Create a sample where the “interesting” portions of the sample are hydrogenated and the “uninteresting” portions are deuterated.
Sample “Design” for DCS & Backscattering

Increase the intensity by increasing the amount of sample

=> Fill the beam with sample

maximum beam size is usually given in the instrument description
3 cm X 10 cm for DCS (or 1.5 cm X 10cm) 3 cm X 3 cm for Backscattering

If possible, use cylindrical samples (rather than flat plate)
Remember - For incoherent, quasielastic scattering the transmission of the beam should be ~90%

Often annular is the best sample geometry

\[\frac{I}{I_o} = \exp \left(-n\sigma_T D \right) \]
Things to consider

If the resolution of backscattering is “not good enough” or if you are only interested in a “limited” region of Q space (typically small Q), use NSE (low Q, long times)

These cases typically involve coherent scattering which tends to peak around $2\pi / (\text{the relevant length scales in your sample})$

Remember – slower motions usually imply larger length scales.

Many atoms moving together \Rightarrow Coherent scattering
Sample “Design” for NSE

Create a sample where the “interesting” portions of the sample have a different SLD than the “uninteresting” portions.

Typically this means deuterating the major phase in order to reduce the incoherent background.

- SLD core: 6.4×10^{-6} Å$^{-2}$
- SLD shell: 1.6×10^{-6} Å$^{-2}$
- SLD solvent: 6.5×10^{-6} Å$^{-2}$

http://www.ncnr.nist.gov/resources/sldcalc.html
Sample “Design” for NSE

Increase the intensity by increasing the amount of sample
 => Fill the beam with sample

Typically use flat plate samples (at small angles)

Rule of thumb - the transmission should be ~70%

\[
\frac{I}{I_0} = \exp \left(-n \sigma_T D \right)
\]
Triple Axis Spectrometers

Triple axis spectrometers are typically used when either the direction of \(Q \) is important or the interesting region of \(Q-\omega \) space is of limited extent.

Remember –
Intensity ↓
Resolution ↑

<table>
<thead>
<tr>
<th>Collimation(°)</th>
<th>(\lambda)</th>
<th>rel. signal</th>
<th>FWHM (meV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55-80-80-80-80</td>
<td>4 Å</td>
<td>1.00</td>
<td>0.28</td>
</tr>
<tr>
<td>55-40-40-40-40</td>
<td>4 Å</td>
<td>0.24</td>
<td>0.17</td>
</tr>
<tr>
<td>69-80-80-80-80</td>
<td>5 Å</td>
<td>0.26</td>
<td>0.13</td>
</tr>
<tr>
<td>84-80-80-80-80</td>
<td>6.1 Å</td>
<td>0.03</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Sample “Design” for Triple Axis

Single Crystals yield the most information

Increase the intensity by increasing the amount of sample
If you have a powder, use a cylindrical container (rather than flat plate)

Annular may be the best sample geometry

Almost all experiments on triple-axis spectrometers involve coherent scattering
=> sample should be deuterated (if it contains H at all)
General Sample “Design”

Try to avoid isotopes that are strongly absorbing

\[^6\text{Li} \quad ^{10}\text{B} \quad ^{113}\text{Cd} \]

For a complete listing go to

http://www.ncnr.nist.gov/resources/n-lengths
General Sample “Design”

The most important thing is:

Know as much about your sample as possible

The types of things that you might want to know include:

What’s the structure (in a general sense)?
Are there any phase transitions (or a glass transition)?
What isotopes are present?
Things to consider

- **Microemulsion**
- **CH₃I**
- **Pyrazine**
- **ZnCr₂O₄**
DCS vs. SPINS

DCS – incoherent scattering, surveys
SPINS – limited region of \(Q - \omega \)

Rules of Thumb: (think carefully before violating)

DCS – systems requiring resolution < 100 \(\mu \text{eV} \)
SPINS – single crystals
Applying for beam time

The use of the neutron scattering instrumentation that you’ve used over the past week is open to all qualified users based on peer-reviewed proposals. Calls for proposals are issued about twice per year.

The next deadline for new proposals will be in the Fall of 2003.

Further information on submitting proposals can be found at:

Acknowledgements

Rob Dimeo and Peter Gehring
Our administrative staff (Julie Keyser)
The experiment teams
Alexei Sokolov and Bruce Gaulin

Thanks for coming