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Rotational Tunneling in Methyl Iodide (CH3I)

An experiment on the High-Flux Backscattering Spectrometer

NIST Center for Neutron Research
Summer School on Methods and Applications of Neutron Spectroscopy

Abstract

We will use high-resolution inelastic neutron spectroscopy to examine the temperature
dependence of the rotational tunnel splitting of the librational ground state of methyl
iodide (also known as iodomethane, CH3I), a textbook example of a symmetric quantum
top.  The goal of this hands-on measurement is to gain an understanding and appreciation
of the backscattering technique, get practical experience in obtaining low temperature
inelastic neutron scattering data, and reduce and interpret a set of these data.
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Introduction

Methyl iodide is a simple example of a quantum rigid rotor and, as a result, exhibits
quantized rotational energy levels.  Such rotations take place primarily about the axis
aligned with the I and C atoms (see figure 1) and can be measured directly with inelastic
neutron scattering.  The rotation of the methyl group is detected via scattering of neutrons
from the hydrogen atoms.  It turns out that hydrogen has an extremely large neutron
scattering cross-section, dwarfing the cross-section of carbon by a factor of 15 and iodine
by more than 20.  An experiment involving scattering from a hydrogenous material like a
methyl group yields many scattering events in a short period of time, thus making it ideal
to study here.

Figure 1  The CH3I molecule, (a) side view and (b) view along I-C axis.

In the solid phase the CH3I molecule is not a free rotor but rather is confined in a
potential well.  The existence and characteristics of the potential well are a consequence
of the molecule’s local environment and the motion of the molecule is a direct
consequence of this confining potential.  Since inelastic neutron scattering probes the
motion of the molecules (actually the H atoms in the molecules) then we should be able
to extract information about the confining potential from the neutron scattering data.

This interesting molecular system exhibits dynamics on a number of energy scales and
we will be probing the extremely low-energy dynamics.  In this measurement we will
explore the effects of temperature on the very low-energy transitions associated with a
type of motion known as rotational tunneling.  As will be discussed in the theory section,
these are the result of splitting librational (torsional oscillation) states.  In short,
rotational tunneling is a term which describes the motion of the H atoms in the molecule
as they tunnel through a potential barrier.  This classically forbidden motion is akin to
you walking unimpeded through one of the concrete shields surrounding the neutron
guides.
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At various points throughout the text we will pose a number of questions delimited from
the rest of the text with boxes.  These are meant to arouse your curiosity (italicized) as
well as ensure that you have learned some of the basic ideas and details of this
measurement (not italicized).  Some of them can be answered based on information
presented in this report while others you will have to find out from us.  We begin with the
following question:

Q:  Do you expect the transition energies associated with libration to be higher or
lower than those associated with rotational tunneling?

Sample and Sample Environment Details

Methyl iodide is a liquid at room temperature and solidifies at –66.5oC.  A small amount
of the liquid has been placed into an annular aluminum sample can at room temperature.
The annular geometry was selected to minimize the amount of corrections necessary in
the data reduction.  If the sample is thick and absorbing then some of the neutrons get
absorbed.  This self-shielding depends both on the absorption cross-section of the sample
as well as the geometry.  For an annular geometry where the neutron sees only a thin
portion of the sample, the corrections are negligible.  Another concern when determining
sample design is minimization of multiple scattering.  In an ideal neutron scattering
measurement we would like for the neutron to scatter once in the sample before reaching
the detector.  In practice the neutrons can undergo multiple scattering events within the
sample and/or are absorbed by the sample, the number of such events increasing with the
thickness of the sample illuminated by the beam.  One often used rule-of-thumb is to
design a sample geometry where 90% of the incident neutrons are transmitted in the
forward direction.  This is a good compromise between signal and the effects of multiple
scattering.  A sample with such a design is usually referred to as a 10% scatterer.  Using
the known scattering and absorption cross-sections for CH3I and the geometry one can
calculate the desired thickness.  For methyl iodide in an annular cell the approximate
thickness for 90% transmission in the forward direction is calculated to be 0.13 mm.  The
annular cell we are using provides a sample thickness of about 0.125 mm.

Q: How many times does the beam go through the sample before reaching the
detectors?

This answer to the question posed above can have important consequences for your
experiment.  If the beam passes through the sample twice (for instance) and the sample
has an appreciable neutron absorption cross-section then the intensity at the detectors will
be lower than if the beam had only passed once through the sample.  Additionally a beam
which passes twice through a strongly scattering sample can produce an energy-
dependent background.

The sample can has been placed on the end of a sample stick which is in a top-loading
orange flow cryostat capable of reaching temperatures as low as 1.4 K.  The
measurements performed here will span 5 K up to 40 K.  The orange cryostat operates on
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the basic principle of a heat exchanger (with cold helium flowing through it) in thermal
contact with the sample well (which is in thermal contact with the sample stick), thus
providing the cooling power.  The cryostat contains two reservoirs: a liquid He reservoir
surrounding the sample well and a liquid N2 reservoir providing a thermal shield between
the He reservoir and room temperature.  Periodic replenishment of both reservoirs is
necessary for sustained operation of the cryostat.  For an experiment like the one being
performed here the experimentalist should expect to have to fill each reservoir daily.

Spectrometer and Data Reduction Details

The HFBS spectrometer is configured in an inverse scattering geometry.  This means that
the energy of the neutron incident on the sample is varied while the final energy of the
neutrons reaching the detectors is fixed.

The general principle of operation of HFBS was presented in a lecture so the details will
not be repeated here.  A summary of the basic principles are as follows:

1. A “white” beam of neutrons back-reflects from the doppler monochromator thus
selecting out particular neutron energies, Ei, dependent upon the speed of the
monochromator when reflected.

2. The reflected neutrons scatter from the sample.
3. Only neutrons with a particular scattered energy, Ef, reflect from the analyzer

array into the detectors.  The energy transfer to the sample is defined as E=Ei-Ef.
4. Neutrons scattered from the sample in a particular direction back-reflect from

particular analyzers in one of the 16 detectors.  This provides the scattering angle,
2θ.

Q: What is the energy range of the neutrons incident on the sample, Ei?  What is the
fixed final energy of the neutrons reaching the detectors, Ef?

Given the scattering angle, 2θ, and energy transfer, E, we may calculate the magnitude of
the momentum transfer delivered to the sample, Q.  Kinematical arguments lead to the
following relationship between 2θ, E, Ei, and Q:

( ) θ−−−= 2cosEEE2EE
m2

Q
iii

n

22
!

(1)

where mn is the mass of the neutron.

The data acquisition system records the number of detector counts as a function of initial
neutron velocity, vi, where vi is related to the instantaneous monochromator velocity, vm,
and the Bragg velocity of the neutrons with wavelength 6.27 Å, vB, via vi=vB+vm.  The
energy transfer to the sample,
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where EB is the Bragg energy of neutrons with wavelength 6.27 Å, is calculated and
written to the raw data file.  Note that the motion of the monochromator is time-
dependent allowing the variation of Ei necessary to an inverse geometry spectrometer.
The raw data measured is recorded as N(2θj,Ek)=Njk, the number of neutrons detected in
detector j (at scattering angle corresponding to 2θj) with an energy transfer to sample of
Ek.

As discussed in the lectures, the quantity which reflects the dynamics of the scattering
system most directly is S(Q,E), the dynamic structure function.  What we measure, Njk, is

closely related to the partial differential cross-section, 
dEd

d2

Ω
σ

.  This can be written in

terms of the various instrument-dependent parameters and the number of counts received
in the detectors,
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where

η(Ef): efficiency of a 3He detector at the fixed final energy, Ef, of the
spectrometer

A: area of incident beam
η(FC): efficiency of beam monitor
N(FC): total number of counts received in the beam monitor
γj: efficiency correction factor for detector j
ρN: number density of scatterers in the sample
V: volume of sample illuminated by the beam
∆E: energy channel width
∆Ωj: solid angle subtended by detector

We can obtain the dynamic structure function [1], S(Q,E), using the first Born
approximation (i.e. a single scattering event dominates the response of the scattering
system) via

dEd
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where

σ: scattering cross-section
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!: Planck’s constant
ki: incident neutron wavevector
kf: final neutron wavevector

Note that for a sample in thermal equilibrium the detailed balance condition is satisfied,

)E,Q(Se)E,Q(S kT

E−
=− , (5)

where E is the sample energy gain [1].  This condition is a way of saying that it is more
likely that a sample will give energy to the neutron when the temperature is higher rather
than lower.

Theory

In a simplified picture of solid CH3I, an individual molecule can be viewed as having a
fixed orientation [2].  This is equivalent to saying that the hydrogen atoms, i.e. protons,
are on fixed labeled sites.  Since the protons are fermions (spin ½), there are three
(energetically) equivalent orientations, 312,231,123 , known as pocket states.

Figure 2 Simplified three-fold rotational potential for CH3I.

This degeneracy can be conveniently written in terms of a three-fold potential which is
expressed approximately as V(φ) = Acos(3φ+α) where the angle φ describes the angular
orientation of the molecule about an axis parallel to the I-C axis (figure 2) and α is a
phase.  For very strong potential values we approach the case discussed in the previous
paragraph where the hydrogen atoms are essentially fixed.  In a one-dimensional picture
such as this there are two types of motion.  The first type of motion is a periodic
oscillation within the potential well known as libration.  The other has to do with the
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pocket states.  Decreasing the potential strength removes the degeneracy of the equivalent
pocket states thus splitting the energy levels so that transitions between the pocket states
now involves an energy transfer.  This phenomenon is known as tunnel splitting.  The
magnitudes of transitions between librational energy levels are on the order of 10 meV
whereas those for tunnel splitting can vary between 1 to 100 µeV at least for splitting of
the ground librational state.

The usual starting point for an analysis of the quantum mechanics of the methyl groups is
the time-independent Schrödinger equation, HΨ = EΨ.  In one dimension the
Hamiltonian for a rotating methyl group is expressed as

( )φ+
φ∂

∂−= V
I2

H
2

22
!

(6)

where I = 5.3 × 10-47 kg m2 for CH3 [3] and ( ) ( )φ−=φ 3cos1
2

V
V 3 .  Solution of equation

(6) can be carried out numerically using the basis functions for free rotors (V3 =  0),

( ) ( )φ=φψ iJexpA JJ . (7) 

In the case when the potential is zero the energy levels are given simply by

�
!

,2,1,0J,
I2

J
E

22

J ±±== (8)

Numerical evaluation of Hamiltonian (6) with the basis functions (7) results in the energy
levels depicted in figure 3.  Those of you who are interested can find the details of the
calculation of the energy levels for the rotor in a three-fold potential in appendix A.

There are a number of notable features in figure 3.  First the energy levels at very small
values of V3 are spaced according to the free rotor values, given by equation (8).  As the
strength of the potential increases, some of the branches split apart such as the J=3 and
J=6 levels.  At high values of V3 some of the separate free rotor energy levels are merged
while others are appearing to merge.  In particular the J=0 and J=1 levels appear to merge
together while the J=3 branch has split and its upper branch seems to merge with the J=2
level.  At very high values of V3 (higher than those displayed in figure 3) many such
mergers take place for the higher J levels.
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Figure 3  Energy levels of the rigid rotor as a function of potential strength.  The free rotor quantum
numbers are listed as well.

The ground state tunneling transition is designated as the transition between the J=0 and
J=1 states.  The energy for such a transition (the difference in energy between the two
levels) is displayed  in figure 4 for a broad range of potential strengths.  The inset
illustrates the tunneling transition energy over a smaller potential strength range.

Figure 4 Energy for the J = 0→1 transition.  Inset is a semilog plot illustrating the approximate exponential
dependence of the transition energy with potential.
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Data Analysis

A typical raw data scan taken on HFBS is shown in figure 5.  There are a number of
features in the data.  The central peak is the elastic scattering from the sample.  The two
satellite peaks which are the inelastic scattering are the tunneling peaks.

Q: Do the intensities of the inelastic peaks satisfy detailed balance?  Is this system
necessarily in thermal equilibrium?

Figure 5  Backscattering data of CH3I taken on HFBS at 5 K.

Q: What is your estimate of V3 based on the data in figure 5 and the model we have
selected?

The effects of deuteration have been studied with this system as well [4].  Since the
nuclei in the methyl group are now composed of a proton and neutron, we would expect
that the moment of inertia of the rotor to be doubled.  The calculation shown in figure 4
has been repeated with such a modification to the moment of inertia and the transition
from the J=0→1 states are displayed over a similar range in figure 6.

 Q: If we were to measure CD3I rather than CH3I do you think that we’d be able to
observe the tunnel splitting with this spectrometer?  Assume that the potential strength
does not change from your estimate in the previous question.
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Figure 6  Potential strength dependence of the one-dimensional rigid rotor CD3I and CH3I for the J = 0→1
transition.

As our backscattering measurement proceeds we will be collecting tunneling spectra at a
number of different temperatures to see the temperature dependence of the peak
positions.  As we collect this data we will update a plot of the temperature dependence of
the tunnel splitting at the instrument.

Q: For the current plot displayed at the spectrometer showing the temperature
dependence of the tunnel splitting, does this behavior make sense?
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Appendix A
Matrix Elements of the 1-D Rigid Rotor in the Three-Fold Potential

The Hamiltonian for the rigid rotor in the three-fold potential is given by equation (6)
repeated below

( )φ+
φ∂

∂−= V
I2

H
2

22
!

(A1)

where

( ) ( )φ−=φ 3cos1
2

V
V 3 . (A2)

The matrix elements can be calculated using the free-rotor basis eigenfunctions

( ) ( ) �,2,1,0n,inexp
2

1
n ±±=φ

π
=φψ (A3)

The Hamiltonian (A1) can be decomposed into two parts, mn
0
mnmn VHH += , where the

elements 0
mnH  are related to the zero-potential energy levels as

mn

22
0
mn I2

n
H δ= !

, (A4)

which can be found via the eigenvalue equation for the free rotor Schrödinger equation

 ( ) ( )φψ=φψ
φ∂
∂− nnn2

22

E
I2

!
, (A5)

with the eigenfunctions given by (A3) and solving for En.  The elements of the potential
matrix, Vmn, are found by calculating the following integral:

( ) ( ) ( )φψφ−φψφ= ∫
π

n
3

2

0

*
mmn 3cos1

2

V
dV . (A6)

Explicit calculation of (A6) and including the zero-potential energy matrix elements (A4)
results in the final expression for the matrix elements of the total Hamiltonian:

{ } �
!

,2,1,0m,n,2
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V
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n
H 0,3mn0,3mnm,n

3
mn

22
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where δn,k is the kronecker delta, 




≠
=

=δ
kn,0

kn,1
k,n .

The energy eigenvalues shown in figure 3 were found numerically by generating the
matrix, Hmn, for some large number N (we used 41 which gives sufficient accuracy) for a
variety of values of V3 and calculating the eigenvalues of Hmn.
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Appendix B
Relationship Between the Lineshape in Time and Energy

In the section titled Spectrometer and Data Reduction Details we stated that the neutrons
are recorded as a function of their initial velocity and converted to energy.  There is
another step in the process necessary to determine the velocity of the neutrons.  The
counts registered in the neutron detectors are actually recorded as a function of time in
fixed width time channels and mapped onto their initial velocities (and then converted to
energy transfer via equation (2)).  In this appendix we provide a qualitative discussion
describing how the raw time-of-flight signal is converted to velocity and energy.

As you have undoubtedly noticed the raw neutron signal displayed on the instrument
computer screen (the raw data) is displayed in time-of-arrival at the detectors.  As an
illustration of such a signal, consider the simulated “raw signal” displayed in figure B.1
composed of two peaks: an elastic peak plus a single inelastic contribution.

Figure B.1  Simulated “raw data” collected as a function of time.

The first thing you notice is that there are two sets of two peaks which posess a mirror
symmetry about some time (here it is about 38 ms).  The reason for this is that the
monochromator scans the neutron velocities in two directions over a complete cycle of its
motion.  Thus the scattering function of the sample is scanned at two different times
during one cycle of the monochromator motion.  The velocity of the monochromator as a
function of time is actually a smoothed triangle function, displayed in figure B.2.  Using
equation (2) which relates the monochromator velocity to energy transfer one can also
plot the energy transfer as a function of time (also displayed in figure B.2).

In figure B.2 note the location in time of the elastic line where v(t) = 0 and E(t) = 0
displayed as vertical lines.  These same lines are also shown in the raw time-of-flight
signal in figure B.1 as well to illustrate the correspondence between the time and energy.
Because of the symmetry of the scan, one lineshape in time is the mirror image of the
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other symmetric about ½ the monochromator period (Tmonochromator = 77 ms in this sample
data).

Figure B.2  Velocity of monochromator and energy transfer to the neutron as a function of time.

The conversion from time to energy consists of three steps:  (i) fold the signal in time at
the detector about its symmetry point (Tsym = 38.5 ms in the example here), (ii) add the
resulting signals and, (iii) convert the time axis over ½ the period of the monochromator
to energy via equation (2).  The result of converting the signal in figure B.1 is shown in
figure B.3.

Figure B.3  Scattering data from figure B.1 after conversion from time to energy.
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Q: The asymmetric lineshape shown in figure B.3 was selected to illustrate the time-
to-energy conversion and how the raw lineshape must be folded about some point in time.
Does this lineshape seem physically reasonable?  (Hint: consider detailed balance and
assume that the data shown in this “simulated measurement” were collected at a
temperature of 5 K)
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Appendix C
Instrument Characteristics for the High Flux Backscattering Spectrometer

(http://www.ncnr.nist.gov/instruments/hfbs)

Si (111) analyzers covering 20% of 4π steradians
Si (111) monochromator 52 cm wide × 28 cm tall
λ = 6.27 Å
Ef =2.08 meV
vn = 630 m/s
16 3He detectors covering 14o < 2θ < 121o

Dynamic range:

-32 µeV < ∆E < 32 µeV
0.1 Å-1 < QEL < 1.7 Å-1  (momentum transfer at zero energy transfer)
τ ≈ 0.1 – 1 ns

Instrumental resolution:

δE < 1 µeV (FWHM)
δQ = 0.1 Å-1- 0.2 Å-1

Flux at sample:

1.4 × 105 n/cm2/s

Beam size at sample:

3 cm × 3 cm

Signal to noise:

350:1 for vanadium foil (10% scatterer)

Sample environment:

Furnace (300 K – 1700 K)
Closed cycle refrigerator (30 K – 600 K)
Orange cryostat (1.5 K – 300 K)
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Appendix D
Effects of the Sample Geometry on Self Shielding and Multiple Scattering

One must consider a number of issues when determining an appropriate sample
geometry.  A naïve philosophy in designing a sample geometry is to make the sample as
big as possible in order to obtain as many scattering events in the shortest possible time.
Unfortunately optimization of the experiment is not as simple as this.  Sample design
involves a careful consideration of the composition of the sample in terms of its
scattering and absorption cross-sections.

In an inverse geometry spectrometer like HFBS where the beam passes through the
sample twice one must consider self-shielding effects which reduce the intensity received
at the detectors via absorption.  In general absorption in the sample is proportional to the
neutron wavelength.  On a backscattering spectrometer using Si(111), Ei= 2.08 meV, λ=
6.27 Å, which results in the cross section for absorption being 3.5 times larger than for
thermal neutrons with 1.8 Å.

In order to understand the extent to which you have to correct for multiple scattering/self-
shielding it is important to know how strong a scatterer/absorber your sample is.  The
transmission in the forward direction (2θ = 0o) is often calculated and expressed in terms
of a percentage of the incident beam that is scattered/absorbed.  For instance, a flat plate
sample with total scattering cross-section, σtot = σinc+σcoh, and absorption cross-section,
σabs, will have a scattering and absorption determined by

( )





θ−π

µ
−−=

2sin

d
exp1scattering s          (flat plate) (D1)

( )





θ−π

µ
−−=

2sin

d
exp1absorption abs        (flat plate) (D2)

where 2θ is the angle of orientation of the slab with respect to the incident beam
direction, d is the thickness of the slab sample, and µ is the scattering coefficient (inverse
scattering length in cm-1) determined by

µs = NAσtotρ/A (D3)
µabs = NAσabsρ/A (D4)

where NA is Avogadro’s number (6.022 × 1023 mol-1), ρ is the mass density of the sample
material (in g/cc), and A is the molecular weight of the sample in g/mol.  On the other
hand an annular sample cell has a scattering/absorption in the forward direction
determined by

( )dexp1scattering sπµ−−=         (annular cell) (D5)
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( )dexp1absorption absπµ−−=         (annular cell) (D6)

where the inverse scattering.absorption lengths are calculated as described above (eqs.
D3 and D4) and d is the wall thickness of the annular sample.  Equations (D5) and (D6)
are good approximations for the cases where exp(-πµd) > 80%.

We illustrate the self-shielding corrections for a vanadium sample (σabs(1.8 Å) = 5.2
barn) for two different geometries: a flat plate and an annular sample.  The intensity in
the detectors is very sensitive to the thickness of the sample as well as its geometry.  If
we assume these two geometries for the same amount of scattering (5%, 10%, and 20%
scatterers respectively as calculated via (D1) and (D5)) and assume that the samples are
completely illuminated by the incident beam then we obtain the results displayed in
figure D.1.  The corrected intensity is obtained using Icorr(2θ,E) = Iobs(2θ,E)/Assc where
Iobs(2θ,E) is the observed intensity.  It is quite clear that there is a much stronger angle
dependence for the correction factor of the slab geometry whereas the corrections are
much less for the annular cell.    Furthermore, an evaluation of the correction factor is
impossible near the orientation angle, 130o in the present example, for the slab geometry.
Therefore it is advantageous to use an annular geometry for backscattering.

Figure D.1 Scattering angle dependence of the self-shielding correction factor for (a) flat plate whose
normal is oriented 130o with respect to incident beam direction and (b) an annular sample geometry.

When one increases the thickness of the sample for a system with a medium absorption
cross-section the intensity will not significantly increase but the effects of multiple
scattering will certainly be enhanced.  Corrections for multiple scattering are not trivial
and, for many systems in which the scattering function is not known a priori, may not be
possible at all.

The system shown in figure D.2 illustrates the effects that multiple scattering can have on
a system, in this case viscous glycerol.  This sample was measured on the IN10
backscattering spectrometer at the ILL at a temperature where the structural relaxation
(viscous flow) is on the time scale of the instrument (0.1–1 ns).  There is a clear
broadening of the lineshape with increasing Q (FWHM ~ Q2) due to the dynamics of the
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system.  However at Q = 0.19 Å-1 structural relaxation cannot be resolved because its too
slow at this small Q.  The effective broadening in the wings is entirely due to multiple
scattering.

Figure D.2 Scattering intensity of viscous glycerol taken on the IN10 backscattering spectrometer
illustrating the effects of multiple scattering on S(Q,E).  Solid line represents the instrumental resolution,
open symbols are data taken at Q=1.4 Å-1, and the closed symbols are data taken at Q=0.19 Å-1 (J. Wuttke
et al., Phys. Rev. E 54, 5364 (1996)).


