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Despite growing interest in the formation of domains or ‘rafts’ in cell and model

membranes, there have been relatively few attempts to characterize such

systems via scattering techniques. Previously [Pencer et al. (2006). J. Appl. Cryst.

39, 293–303], it was demonstrated that the Porod invariant, Q, could be used to

detect lateral segregation. Here, the general theory for scattering from laterally

heterogeneous vesicles is outlined and form factors are derived for vesicles

containing either single circular or annular domains. These form factors are then

applied to the analysis of neutron scattering data from heterogeneous vesicles.

Potential advantages and limitations of this technique are also discussed.

1. Introduction

The term lipid ‘rafts’ describes putative domains in cell

membranes, enriched in cholesterol and saturated sphingo-

lipid, and depleted of unsaturated and polyunsaturated lipids

(Edidin, 2001). These rafts have been postulated to play

important roles as sites for the transfer of information and

material between cells, and also as sites for infection by

viruses, such as HIV and Ebola. Model membranes

constructed to investigate the lipid-related mechanisms for

raft formation typically contain three elements: a long-chain

saturated phospho- or sphingolipid, cholesterol (or a structu-

rally related sterol), and an unsaturated, polyunsaturated or

short-chain lipid.

The most compelling evidence for the presence of lateral

heterogeneities or rafts (i.e. phase coexistence) in model

membranes comes from fluorescent light microscopy studies

of micrometre-sized or giant unilamellar vesicles (GUVs)

(see e.g. Korlach et al., 1999; Bagatolli & Gratton, 2000;

Dietrich et al., 2001). In these studies, GUVs are formed from

lipid mixtures which potentially show phase separation and

their domains are detected via the preferential partitioning

of fluorescent probes into one phase over the other. For GUVs

composed of two lipid components, heterogeneities are the

result of liquid disordered (ld or fluid) and solid ordered (so

or gel) phase coexistence, while ternary (lipid–lipid–sterol)

mixtures show coexistence between liquid ordered (lo) and

ld phases. In the case of solid–liquid coexistence, the higher-

melting-temperature lipid is enriched in the solid phase

and depleted from the liquid phase. For liquid–liquid coex-

istence, cholesterol and saturated lipid are enriched in the

liquid ordered phase and depleted from the liquid disordered

phase.

The general findings from fluorescence microscopy studies

are that the formation of domains depends both on membrane

composition and temperature (Veatch & Keller, 2003), and

that liquid or solid domains can exhibit a variety of

morphologies, including circular domains (Veatch et al., 2004),

intersecting stripes (Li & Cheng, 2006), regular arrangements

of circular or striped domains (Baumgart et al., 2003) and

irregular patches (Feigenson & Buboltz, 2001). In general,

irregular domains are seen in solid–liquid coexisting systems

(i.e. in binary mixtures) (Bagatolli & Gratton, 2000), while for

liquid–liquid phase coexistence (i.e. in ternary or model ‘raft’

forming mixtures) domains are circular, driven by line tension

(Veatch et al., 2004), although Baumgart et al. (2003) have also

observed striped domains in raft mixtures. Interestingly, it is

not clear from these studies whether the variety of domain

shapes observed reflects differences in the innate equilibrium

behaviour of these systems, or merely differences in their

kinetics. In the case of liquid–liquid coexistence, Yanagisawa

et al. (2007) have shown that vesicles having single circular

domains are most likely in their equilibrium state. Recent

studies have also demonstrated that even very small amounts

(�0.5 mol%) of fluorescent probe can dramatically change the

phase behaviour of mixtures (Veatch et al., 2007), leading to

the question of whether these probes also influence domain

morphology.



Besides the potential variation of domain morphologies in

model systems, further complications arise in characterizing

domains due to potential variation in both the length scales

and lifetimes of the domains in model versus cell membranes

(Jacobson et al., 2007). While micrometre-sized domains with

lifetimes between minutes and hours are observed in model

membranes, it is believed that domains or rafts in cell

membranes are transient, having lifetimes as short as micro-

seconds and sizes as small as nanometres (Mayor & Rao,

2004).

As we have discussed (Pencer et al., 2005), a variety of

experiments on model and cell membranes have led to two

possibly different categories of heterogeneity: (i) large

(micrometre-sized) stable domains, readily observable by

fluorescence microscopy, and with compositions defined by

equilibrium thermodynamics (i.e. the tie lines that can be

constructed in binary and ternary phase diagrams), and (ii)

small (nanoscopic) domains which could either be stable and

defined by the same rules as in (i), or transient, with variable

composition and lifetimes.

Scattering techniques, such as diffraction and small-angle

scattering, using either neutrons or X-rays, show promise in

characterizing membrane domains, since the techniques are

able to span the length scales intermediate between micro-

metres and nanometres. Neutron scattering, furthermore (via

selective deuteration), is sensitive to heterogeneities in

membrane composition, and provides direct structural char-

acterization of membrane heterogeneity. As discussed earlier

(Pencer et al., 2005), the investigation of membrane domains

by small-angle neutron scattering (SANS) thus presents a

unique opportunity to determine whether nanoscopic domains

in model membranes are equivalent to their microscopic

counterparts, or are better classified as short length-scale

fluctuations in local composition.

Previously, we demonstrated the efficacy of the SANS

method to characterize membrane heterogeneities (Pencer et

al., 2005), and more recently, derived a model independent

SANS method for the detection of membrane domains

(Pencer et al., 2006a). While there have been a number of

previous attempts to characterize heterogeneous unilamellar

vesicles (ULVs) by SANS (Knoll et al., 1981; Czeslik et al.,

1997; Nicolini et al., 2004; Pencer et al., 2005; Hirai et al., 2006;

Masui et al., 2006; Pencer et al., 2006a), to the best of our

knowledge the theory presented here constitutes the first

complete treatment of the laterally heterogeneous vesicle

form factor, since the problem was originally posed by Moody

(1975).

In this paper, form factors are derived for vesicles

containing single circular or annular domains. These models

are then used to fit experimental data and extract both the

scattering length density (SLD) and area fractions of phases in

a two component membrane. A number of issues, such as

heterogeneities in SLD perpendicular to the membrane plane,

vesicle polydispersity, the validity of the thin-shell approx-

imation, and the relevance and applicability of the scattering

models, are also discussed.

2. Theory

Here, we use a slightly different notation from that of Pencer

et al. (2006a). For convenience of discussion, in lieu of the

coherent scattering length density, �ðrÞ, we use the macro-

scopic optical potential, U(r), where the two are related by

(Sears, 1989)

UðrÞ ¼
2�h- 2�ðrÞ

m
: ð1Þ

where m is the neutron mass, r is the vector from the origin,

and h- = h/2�, where h is Planck’s constant. The potential U

will be expanded in spherical harmonics in a convenient frame

of reference for r. In the discussion below, we will show two

expansions of U(r).

The Born approximation can be written as

d� ¼
m2

4�2h4

Z
UðrÞ exp �iq � rð Þ d3r

����
����

2

; ð2Þ

where q
�� �� = 4� sin �=2ð Þ=� (� is the scattering angle, � is the

wavelength), and q points from the origin to the detector. The

amplitude of the approximation is

a ¼ �
m

2�h2

Z
UðrÞ exp �iq � rð Þ d3r: ð3Þ

The symmetry of the problem at hand is defined by the

spherical vesicle shell, which we define in spherical coordi-

nates as

vm
l rð Þ ¼

Z
U rð ÞYm�

l r̂rð Þ sin � d� d’: ð4Þ

Note that q̂q and r̂r are unit vectors whose directions are parallel

to q and r, respectively. The expansion of the plane wave

expð�iq � rÞ in terms of spherical harmonics, Ym
l , is given by

(Newton, 2002)

expð�iq � rÞ ¼
4�

qr

X
l;m

ð�iÞlulðqrÞYm�
l ðr̂rÞY

m
l ðq̂qÞ ð5Þ

¼ 4�
X
l;m

�ið Þ
l
jlðqrÞYm�

l r̂rð ÞYm
l q̂qð Þ: ð6Þ

The two functions are put together and integrated, resulting in

aðqÞ ¼ �
m

2�h2

Z
UðrÞ exp �iq � rð Þ d3r

¼ �
2m

h2

X
l;m

�ið Þ
l
Ym

l q̂qð Þ

Z1
0

r2jlðqrÞvm
l ðrÞ dr; ð7Þ

where jl are spherical Bessel functions of order l (Newton,

2002).

For heterogeneous vesicles (e.g. shown schematically in

Fig. 1), we expand the potential U into two contributions: W,

which is homogeneous with respect to � and ’, and V, which is

heterogeneous with respect to � and ’. Suppose that the raft

phase on a vesicle has an SLD �1, and covers a relative vesicle

area a1, and that the remaining vesicle has an SLD �2, and

covers a relative area a2. If the vesicle is heated until its
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components are homogeneously mixed, the vesicle should

have an SLD ���ðrÞ = a1�1ðrÞ + a2�2ðrÞ. This leads to two possible

definitions for V and W.

If we take the homogeneous part of U to correspond to the

contribution from the average SLD, then

WðrÞ ¼ WðrÞ ¼ ���ðrÞ ¼ a1�1ðrÞ þ a2�2ðrÞ ð8Þ

for all values of � and ’, and

VðrÞ ¼ �ðr; �; ’Þ; ð9Þ

where �ðr; �; ’Þ = �1ðrÞ inside the raft phase and �ðr; �; ’Þ =

�2ðrÞ outside the raft phase. Alternatively, we can take the

homogeneous contribution to U to correspond to the majority

phase. In this case,

WðrÞ ¼ WðrÞ ¼ �2ðrÞ; ð10Þ

for all values of � and ’, and

VðrÞ ¼ �ðr; �; ’Þ; ð11Þ

where �ðr; �; ’Þ = �1ðr; �; ’Þ � �2ðrÞ inside the raft phase and

�ðr; �; ’Þ = 0 outside. In the following derivation for the

heterogeneous vesicle form factor, we will use the latter

definitions [e.g. equations (10) and (11)] of VðrÞ and WðrÞ.

Two further simplifications can be made to this model. The

first is to assume that the SLD is factorizable into radial and

angular components, while the second is to assume that the

boundary between phases is sharp. Below, we will also include

a further simplification that the SLD is constant with respect

to � and ’ inside each phase. The results below can be

generalized, however, to cases where the SLD is variable

within the phases.

While it is possible to obtain laterally homogeneous

membranes, either by restricting membrane components to

ones that are fully miscible or by working under the appro-

priate experimental conditions, such membranes can still be

heterogeneous perpendicular to the membrane plane, in

particular because the lipid acyl chains and lipid head-groups

are chemically distinct. The correct form of �radial rð Þ should

therefore take into account such heterogeneities. A further

complication is the possible mismatch between the thickness

of the rafts and the remaining vesicle, which can be taken care

of by the appropriate definitions of both the radial SLD,

vradialðrÞ and a transition zone, given by wangular �; ’ð Þ.

2.1. The heterogeneous vesicle form factor

Below, we consider the case of a single domain (or raft) as

a circle on the surface of a sphere. In the Appendices, we

generalize these results to more complicated domains. For the

calculation presented here, it is convenient to consider the

coordinate system having the z axis pointing through the

centre of this circle, and �, as the angle between the z axis and

the conic surface, centred on the vesicle centre and supported

on the boundary of the raft. The contribution from the raft to

the scattering amplitude can be evaluated through a simplifi-

cation of the above formula,Z
VðrÞ exp �iq � rð Þ d3r

¼ 4�
X

l

�ið ÞlY0
l q̂qð Þ

Z1
0

V rr̂rð Þr2jlðqrÞY0
l r̂rð Þ dr: ð12Þ

For the normalization we use

Y0
l �; ’ð Þ ¼ il 2l þ 1

4�

� �1=2

Pl cos �ð Þ; ð13Þ

where Pl are Legendre polynomials of order l (Newton, 2002).

As a first simplification, we assume that the raft contribu-

tion can be factored into a radial dependent term, v, and an

angular dependent term, w,

V rr̂rð Þ ¼ v rð Þw r̂rð Þ: ð14Þ

Then, the raft contribution isZ
VðrÞ exp �iq � rð Þ d3r

¼
X

l

2l þ 1ð ÞPl cos �q

� �

�

Z1
0

v rð Þr2jlðqrÞ dr

Z�
0

w cos �ð ÞPl cos �ð Þ sin � d�; ð15Þ

where �q is the angle between the z axis and the scattering

vector q. Note that since the raft is circular and centred on the

z-axis, there is no dependence of w on ’.

For convenience, we define the following functions,

Xlð�Þ ¼

Z�
0

wðcos �ÞPlðcos �Þ sin � d� ð16Þ

and

Zlðq;RÞ ¼ q

Z1
0

vðrÞr2jlðqrÞ dr: ð17Þ

We can then rewrite the raft contribution asZ
VðrÞ exp �iq � rð Þ d3r ¼

1

q

X
l

2l þ 1ð ÞPl cos �q

� �
� Xlð�ÞZlðq;RÞ: ð18Þ

As will be shown, the radial and angular integration parts can

be processed further.
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Figure 1
Schematic of a heterogeneous vesicle. The circle defined by the angle �
defines a circular domain, centred on the z axis, of a vesicle of radius r.



For a single raft on a vesicle, the combined contributions

from the raft and vesicle can be written asZ
UðrÞ exp �iq � rð Þ d3r ¼

2

q
ZWðq;RÞ þ

1

q
Z0ðq;RÞX0ð�Þ

þ
1

q

X1
l¼1

2lþ1ð ÞPl cos �q

� �
Zlðq;RÞXlð�Þ;

ð19Þ

where ZWðq;RÞ is the homogeneous vesicle contribution,

defined as

ZWðq;RÞ ¼ q

Z1
0

WðrÞr2j0ðqrÞ dr: ð20Þ

If one assumes that the vector q̂q is randomly distributed, and

one applies the formula for the integrated cross section given

by Harrison (1969), Z
FðqÞF�ðqÞ dq̂q; ð21Þ

one obtains

1

2

Z Z
UðrÞ exp �iq � rð Þ d3r

� �2

sin �q d�q

¼
2ZWðq;RÞ þ Z0ðq;RÞX0ð�Þ

q

� 	2

þ
1

q2

X1
l¼1

ð2l þ 1Þ2Z2
l ðq;RÞX2

l ð�Þ: ð22Þ

Note that the first term is the only one that contains both the

contribution from the dominant component of the vesicle wall

and the contribution from the raft. Note also that, to first

order, in the raft contribution one can only see a constant

factor multiplying the original interference pattern. Any

change to the pattern is of second order and results from the

raft’s self-correlation function. This result applies to any

laterally heterogeneous vesicle that shows cylindrical

symmetry. Below, we determine both the angular and radial

factors, Xlðcos�Þ and Zlðq;RÞ, respectively, for specific forms

of v(r) and wðcos �Þ, in particular for a vesicle with a single

circular domain.

2.1.1. The angular factors. As discussed previously, we

assume that the boundary between the raft and the

surrounding membrane is sharp. Moreover, the SLD within

the raft region does not vary with � or ’. The angular SLD

term, wðcos �Þ, can then be written as

wðcos �Þ ¼ 1 for 0 � � � �; ð23Þ

wðcos �Þ ¼ 0 for � > �: ð24Þ

To compute the angular factor Xlð�Þ, we start from the rela-

tion given by Lebedev (1972),

P 0lþ1ðxÞ � xP 0l ðxÞ ¼ l þ 1ð ÞPlðxÞ: ð25Þ

A slight rearrangement then gives

P 0lþ1ðxÞ � xPlð Þ
0
ðxÞ ¼ lPlðxÞ: ð26Þ

This equation is then integrated and used in the computation

of Xlð�Þ,

l

Z1

cos �

PlðxÞ dx ¼ Plþ1ðxÞ � xPlðxÞ

 ����1

cos �
: ð27Þ

Rearranging, one obtains for Xlð�Þ and l> 0,

Xlð�Þ ¼

Z1

cos �

PlðxÞ dx ¼
cos �Plðcos �Þ � Plþ1ðcos �Þ

l
: ð28Þ

X0ð�Þ is computed directly by

X0ð�Þ ¼ 1� cos�: ð29Þ

For l � Rvesicle=Rraft, one can estimate the angular factor for

small rafts by

Xlð�Þ ’ ð1� cos �Þ: ð30Þ

2.1.2. The radial factors. The lipid membrane of a vesicle

typically has a radially heterogeneous SLD profile, even if it is

laterally homogeneous, resulting from the differences in SLD

between the lipid head-group and acyl-chain regions. Models

for radially heterogeneous lipid membranes are discussed in

detail by e.g. Kučerka et al. (2004) and Pencer et al. (2006).

However, as discussed by Pencer et al. (2006a), it is experi-

mentally possible to produce vesicles with radially homo-

geneous SLD through the partial deuteration of the lipid acyl

chains. Below we consider two possibilities for v(r): (i) radially

homogeneous membranes, and (ii) membranes with three

uniform layers, corresponding to the inner and outer head-

group regions and acyl-chain region.

For radially homogeneous membranes [case (i)], v(r) is

given by

vðrÞ ¼
�ðrÞ for Ri � r � Ro

0 for r < Ri; r >Ro;

�
ð31Þ

where � is the mean SLD of the membrane, and Ri and Ro are

the vesicle inner and outer radii, respectively.

In evaluating Zlðq;RÞ, we first consider case (i). As

discussed by Pencer et al. (2006a), this case corresponds

experimentally to the situation where the mean acyl-chain

SLD equals that of the lipid head-group region. The calcula-

tion of ZWðq;RÞ using W(r) = �2ðrÞ is equivalent to that of

Z0ðq;RÞ using v(r) = �ðrÞ. Zlðq;RÞ in some cases can be

computed using only elementary transcendental functions,

while in other cases is calculated using the integral sine and

cosine functions. Zlðq;RÞ for l = 0, 1, 2, will be computed first.

This is done for two purposes: first, the zeroth-order term is

compared with known results (Kerker, 1969) and, second, that

in some cases the zeroth-, first- and second-order terms are all

that are needed. The functions
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j0 ¼
sin z

z
;

j1 ¼ �
cos z

z
þ

sin z

z2
;

j2 ¼ �3
cos z

z2
þ

�
3

z2
� 1

�
sin z

z
;

ð32Þ

are integrated between Ri and Ro (as defined by Pencer &

Hallett, 2003). The results are

Z0ðq;RÞ ¼ �

�
r2

 
sin qr

ðqrÞ
2 �

cos qr

qr

!�����
Ro

Ri

;

Z1ðq;RÞ ¼ �

"
r2

�
�

2 cos qr

ðqrÞ2
�

sin qr

qr

�#�����
Ro

Ri

;

Z2ðq;RÞ ¼ �

"
r2

 
�

4 sin qr

ðqrÞ
2 þ

cos qr

qr
þ

3SiðqrÞ

ðqrÞ
2

!#�����
Ro

Ri

;

ð33Þ

where

SiðzÞ ¼

Zz

0

sin y

y
dy:

Rearranging the terms, and changing the function definitions

accordingly, one can see that the formula for Z0 is similar to

the term derived by Pencer & Hallett (2003).

Using the definitions of Newton (2002) and McLachlan

(1955), we can define jl as

jl ¼ �1ð Þlzl 1

z

d

dz

� �l

½ j0ðzÞ	: ð34Þ

Zl are computed according to equation (17). Changing the

variable to z = qr yields

Zlðq;RÞ ¼
�

q2

ZqRo

qRi

jlðzÞz
2 dz: ð35Þ

If one assumes that the vesicle is thin, then the radial inte-

gration reduces to a product,

Zl q;Rð Þ ’ �qjl

qRo þ qRi

2

� �
Ro � Rið Þ

Ro þ Ri

2

� �2

: ð36Þ

For radially heterogeneous vesicles, case (ii), the form for Zl

remains the same as in case (i); however, the limits of inte-

gration change. To account for the differences between the

lipid acyl-chain and head-group regions [case (ii)], �ðrÞ is given

by

�ðrÞ ¼

�h for R0 � r � R1

�ac for R1 < r<R2

�h for R2 � r � R3

0 for r<R0; r>R3:

8><
>: ð37Þ

The functions jl are then evaluated between R0 and R3. For

Z0ðq;RÞ this gives

Z0 q;Rð Þ ¼
X3

N¼1

�N r2 sin qr

qrð Þ
2 �

cos qr

qr

� �� �����
RN

RN�1

; ð38Þ

where Zl are evaluated similarly to Z0, �1 = �3 = �h and �2 =

�ac, and RN are as above.

Using the derived form factors, it is also possible to evaluate

a number of other cases for laterally heterogeneous vesicles.

In the Appendices, we consider three cases: Appendix A

describes the form factor for circular domains on the inner and

outer monolayers formed independently, while Appendix B

describes the form factor for single annular domains.

3. Evaluation of the model

Below, scattering curves are calculated for mixed lipid vesicles

exhibiting lateral heterogeneities. The calculations and plots

that follow will be used to assess several approximations to the

form factor.

3.1. Structural parameters

To generate data relevant to experimental conditions, we

use compositions and area fractions derived from the phase

diagram for mixtures of 1,2-dipalmitoyl-sn-glycero-3-phos-

phocholine (DPPC) and 1,2-dilauroyl-sn-glycero-3-phospho-

choline (DLPC) (van Dijck et al., 1977). The experimental

data, which will be discussed in a subsequent section, has also

been obtained for this lipid mixture. In Table 1, the relative

fractions of DPPC in the liquid and solid phases are given, as

well as the relative molar fraction of each phase. Accurate

determination of the volume fractions and SLD of the solid

and fluid phases requires knowledge of the molecular volumes

of DPPC and DLPC in each phase. Alternatively, we can

assume that the lipid molecular volumes are equal to each

other, and equal in both the solid and liquid phases. We will

test the accuracy of this assumption below.

In order to calculate the relative volume fractions of the

solid and liquid phases, we use the molecular volumes of pure

DPPC and DLPC in their respective phases; i.e. the volume of

DPPC in the solid phase will equal that of pure DPPC in its gel

phase, and so on. We can then calculate the relative volume

fraction of the gel phase (denoted by the subscript 1), v1, as

v1 ¼
n1 X2V1;1 þ ð1� X2ÞV1;2


 �
n1 X2V1;1 þ ð1� X2ÞV1;2


 �
þ n2 X2V2;1 þ ð1� X2ÞV2;2


 � ;
ð39Þ
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Table 1
Parameters extracted from the DLPC:DPPC phase diagram of van Dijck
et al. (1977).

Subscript 1 denotes the solid (gel) phase and subscript 2 denotes the liquid
(fluid) phase.

Molar fraction of DPPC in solid phase, X1 0.85
Molar fraction of DPPC in liquid phase, X2 0.34
Relative molar fraction of solid phase, n1 0.31
Relative molar fraction of liquid phase, n2 0.69



where Vi;1, Vi;2, are the molecular volumes of DPPC (1) and

DLPC (2) in the gel (i = 1) and liquid (i = 2) phases, respec-

tively. We use volumes of 1144 and 1232 Å3 for DPPC in the

gel and liquid phases, respectively (Nagle & Tristram-Nagle,

2000), 991 Å3 for DLPC in the fluid phase (Kučerka et al.,

2005) and estimate a volume of 910 Å3 for DLPC in the gel

phase. We find that the relative volume fractions of the gel and

fluid phases are 0.32 and 0.68, respectively. Note that, if the

molecular volumes of DPPC and DLPC were assumed to be

the same in both phases, then the relative volume fractions

would be 0.31 and 0.69.

The SLD of the gel and fluid phases is determined via

(Pencer et al., 2005)

�1 ¼
n1;1V1;1�1;1 þ n1;2V1;2�1;2

n1;1V1;1 þ n1;2V1;2

; ð40Þ

where n1;i, V1;i and �1;i are the number, molecular volume and

SLD of lipids of species i in region 1. The total volume of

region 1 is V1 = n1;1V1;1 þ n1;2V1;2. Note that our modelling

requires separate determinations of the head-group and acyl-

chain SLD. Following the arguments of Nagle & Tristram-

Nagle (2000), we assume a constant molecular volume of

319 Å3 for the phosphocholine head-group for both DLPC

and DPPC, regardless of phase. We obtain an SLD of 1.88 �

10�6 Å�2 for the head-group region, 1.08 � 10�6 Å�2 for the

acyl-chain region of the fluid phase, and 3.07 � 10�6 Å�2 for

the gel phase. The mean membrane SLD and mean acyl-chain

SLD in the fluid phase are 1.73 � 10�6 Å�2 and 1.67 �

10�6 Å�2, respectively.

Finally, we consider differences in the thickness and mole-

cular areas of lipids in the gel and fluid phases. On heating

from the gel to liquid phase, DPPC shows a decrease in

thickness of �6 Å (17%) and concomitant increase in area of

roughly 15 Å2 (30%) (Nagle & Tristram-Nagle, 2000). These

differences provide an upper bound on our estimates of the

differences between mean molecular thickness and areas of

lipids in the gel and fluid phases of the DLPC–DPPC mixture.

If we assume the maximum difference between mean mole-

cular areas in the gel and fluid phases of 30%, then a molar

fraction of 0.69 for the fluid phase translates to an area frac-

tion of 0.74. Table 2 summarizes the parameters used to

generate the scattering curves that follow.

3.2. Polydispersity

In practice, ULVs are always polydisperse. In order to

account for polydispersity, the vesicle scattering function is

integrated with the size distribution, G(R), either numerically

(e.g., Pencer & Hallett, 2003; Kučerka et al., 2004) or analy-

tically, by assuming a uniform membrane SLD and a Schultz

distribution for G(R) (e.g. Aragòn & Pecora, 1976). We have

recently shown that, using the separated form factor (SFF)

approximation (Kiselev et al., 2002), the procedure of Aragòn

& Pecora (1976) can be generalized to polydisperse ULVs of

arbitrary membrane SLD (Pencer et al., 2006). In Appendix C

we further extend our previous results to provide expressions

for arbitrary Zl in the case of polydisperse vesicles.

3.3. Truncation effects in the series representation

Calculation of the scattering function for heterogeneous

vesicles relies on a series representation. For practical

purposes, it is therefore important to determine how many

orders of the series expansion are required to reasonably fit

the data. In this regard, two factors are important: the

magnitude of the angular factors, Xlð�Þ, and the radial factors,

Zlðq;RÞ, as a function of order l.

Fig. 2 shows Xlð�Þ, plotted as a function of order l for

several domain sizes, �, ranging from 30 to 150
, corre-

sponding to a total ULV surface area fraction of between 7

and 93%. For all values of �, the magnitude of Xlð�Þ decreases

as l increases, and is significantly more rapid for large domains.

In particular, for large domains (� ’ 150
) X6ð�Þ is less than

1% of X0ð�Þ, while for small domains (� ’ 30
) the relative

contribution of X6ð�Þ is �10%.

In Fig. 3, Zlðq;RÞ (using the SFF approximation) are plotted

as a function of scattering vector, q, for orders l = 0 to 5. It is

noteworthy that the only non-zero Zlðq;RÞ at q = 0 is the

zeroth-order radial factor, which is equivalent to the scattering
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Table 2
Mean membrane SLD ( ���), mean acyl-chain SLD (�ac) and mean head-
group SLD (�h) for a 1:1 mixture of DLPC:DPPC at 298 K.

The lipid mixture contains 0.5 molar fractions of DPPC and chain
perdeuterated DPPC (dDPPC).

Mean vesicle radius, R (Å) 300
Vesicle relative polydispersity, �/hRi 0.25
Head-group thickness, th (Å) 10
Gel-phase acyl-chain thickness, tac;1 (Å) 36
Liquid-phase acyl-chain thickness, tac;2 (Å) 30
Relative volume fraction of gel phase, v1 0.32
Relative volume fraction of liquid phase, v2 0.68
Relative area fraction of gel phase, a1 0.26
Relative area fraction of liquid phase, a2 0.74
Mean membrane SLD, ��� (Å�2) 1.73 � 10�6

Mean acyl-chain SLD, �ac (Å�2) 1.67 � 10�6

Head-group SLD, �h (Å�2) 1.88 � 10�6

Acyl-chain SLD of solid phase, �ac;1 (Å�2) 3.07 � 10�6

Acyl-chain SLD of liquid phase, �ac;2 (Å�2) 1.08 � 10�6

SLD of medium, �s (Å�2) 1.73 � 10�6

Figure 2
The angular factors, Xlð�Þ, plotted as a function of order, l, for several
values of domain size, �.



contribution from homogeneous vesicles. The higher order

Zlðq;RÞ show maxima at intermediate length scales, which

decrease in value and are shifted to higher q as the order l

increases. As the order l increases, the relative contribution of

Zlðq;RÞXlð�Þ rapidly decreases.

Finally, Fig. 4 shows plots of the full form factor for

heterogeneous vesicles as a function of q, plotted for l = 0 to 5.

Clearly, the most dramatic change in the scattering curves

occurs between l = 0 and l = 1. This change corresponds to the

addition of the leading order ‘non-homogeneous’ term to the

homogeneous form factor (l = 0). The addition of higher order

terms produces only small qualitative changes to the scattering

curve. Thus, the primary influence of heterogeneity on the q-

dependence of the scattering curve is essentially captured by

the addition of the l = 1 term alone. It seems, therefore, that

the scattering function is reasonably insensitive to truncation

of higher order terms in its expansion.

3.4. The thin-shell approximation

Thus far, we have discussed the importance of l > 0 terms in

the expansion of the heterogeneous vesicle form factor. Also

of interest is the potential contribution of the bilayer

membrane form factor (or radial SLD profile) to the vesicle

form factor. Fig. 4 shows calculations for the ‘thin shell’ form

factor (for l = 1 and l = 5) using the parameters from Table 1.

In this case, we assume that the radial density is a delta

function in r. Comparison of these curves with the full scat-

tering curves shows that the thin shell approximation follows

the full function up to about q = 0.05 Å�1, or qt ’ 2.5. It is

likely that the thin shell approximation for heterogeneous

vesicles is most robust for qt < 1; however, we have not

investigated this in detail.

3.5. Validity of the analytic models

SANS measurements on a vesicle sample yield data aver-

aged over time, vesicle orientation and a large number of

vesicles. Correct interpretation and analysis of SANS from

heterogeneous vesicles therefore requires that domains are

stable over the course of the measurement, and that orienta-

tional and ensemble averaging is taken into account when

calculating the form factor. In particular, the analytic models

that we have derived implicitly assume that all vesicles in a

sample show the same type and relative size of domain and

that these domains do not change as a function of time.

Limitations of this approach are: (a) if there is variation in the

size and morphology of domains among vesicles, the analysis

will provide an intensity averaged representation, and (b) if

domains grow or disappear as a function of time, the apparent

domain size will depend on the time interval of the

measurements.

In the case of heterogeneous GUV showing liquid–liquid

phase coexistence, it has recently been demonstrated that

domain coarsening or coalescence occurs within minutes,

resulting in single circular domains in each vesicle (Yanagi-

sawa et al., 2007). While in some cases ‘trapped coarsening’ or

the metastability of multiple domains can occur, we do not

expect such behaviour here; our samples are prepared in the

absence of solute or buffer, allowing vesicles to maintain a

spherical shape (see e.g. Pencer et al., 2001), while the process

of ‘trapped coarsening’ has been shown to depend on the

availability of excess area, maintained by an osmotic gradient

(Yanagisawa et al., 2007). Thus, we expect both domain

stability and uniformity among vesicles. However, we cannot

discount the possibility of domain morphologies beyond those

considered here. We will return to a discussion of this in the

conclusion (x6).

3.6. The detection limit for membrane domains

As discussed above, selective deuteration of one of the lipid

components present is required to obtain the contrast neces-

sary to distinguish between membrane domains and the

remaining vesicle. However, even under optimal contrast

conditions there is a minimum detectable domain size.

Evaluation of this lower bound on domain size requires a

reexamination of the heterogeneous vesicle form factor

[equation (22)]. Note that, under optimal contrast matching

conditions (SLD head-group = SLD medium = mean acyl-
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Figure 3
The radial factors, Zlðq;RÞ, plotted as a function of the modulus of the
scattering vector value, q. The mean vesicle radius is R = 300 Å, and
polydispersity is �=hRi = 0.25. The curves are calculated using the
separated form-factor approximation (i.e. t<R).

Figure 4
Calculated scattering curves for polydisperse heterogeneous vesicles. The
parameters used for the calculation are summarized in Table 1.



chain SLD), the first term in equation (22) does not contribute

to the scattered intensity. Consequently, the scattered intensity

from heterogeneous vesicles will be proportional to

X1ð�ÞZ1ðqRÞ plus higher order terms. For the special case of

circular domains, we find that

I / ð�1 � �2Þ
2
½cosð�ÞP1ðcos�Þ � P2ðcos �Þ	2;

/
1

4
�1 � �2ð Þ

2sin4 �; ð41Þ

where �1 and �2 are the SLD of the domain and remaining

vesicle, and � is the angle defined by the lines from the origin

(centre of the vesicle) to the domain centre and its edge. Thus

the absolute detection limit will depend not only on the

domain size (defined by �) but also on the domain–vesicle

contrast (�1 � �2).

Suppose that, in order to detect domains, we require at least

1% of the maximum possible intensity due to the domain–

vesicle contrast. This 1% signal will require an angle, �, of at

least 0:1� or approximately 20
, corresponding to an area

fraction on the vesicle surface of about 3%. For a 30 nm-radius

vesicle, the minimum detectable domain size would therefore

be approximately 10 nm in radius (note that, since the domain

is projected onto a spherical surface, a domain covering half

the vesicle surface would have a radius of 60 nm).

4. Experimental procedures

4.1. Materials

1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-

dipalmitoyl-D62-sn-glycero-3-phosphocholine (dDPPC), and

1,2-dilauroyl-sn-glycero -3-phosphocholine (DLPC) were

purchased from Avanti Polar Lipids (Birmingham, AL, USA)

as lyophilized powders, and used without further purification.

Upon arrival, the various lipids were stored at 233 K. 99%

purity D2O was purchased from Cambridge Scientific

(Andover, MA, USA), while all other chemicals were reagent

grade.

4.2. Vesicle preparation

Lipids solubilized in chloroform were transferred to 4 ml

glass vials in appropriate proportions to produce solubilized

lipid mixtures of predetermined molar ratios. The chloroform

was removed under a stream of N2 followed by vacuum

pumping. Lipid films were then preheated to 333 K and

dispersed, by agitation, using deionized water that was filtered

through a Millipore Milli-Q water purification system (mixed

in appropriate D2O ratios), which had also been preheated to

333 K. The lipid dispersions were then extruded using a hand-

held extruder (Avanti Polar Lipids), preheated to 333 K. Total

lipid concentrations ranged from 1 to 10 mg ml�1. ULVs with

approximately 30 nm radius were formed by successive

extrusions using polycarbonate filters with three different pore

diameters, and a total of 43 passes [e.g. 200 nm (9 times),

100 nm (9 times) and 50 nm (25 times)].

4.3. Contrast matching

The detection of membrane domains by SANS requires the

deuteration of at least one membrane component. Here, the

DPPC component in DPPC–DLPC mixtures was chain deut-

erated, in order to enhance the contrast between DPPC-rich

and DPPC-depleted domains. Optimal contrast conditions for

detection of lateral heterogeneities in membranes also relies

on contrast matching the homogeneously mixed components.

The calculation of the mean vesicle SLD and corresponding

contrast match point is described in detail by Pencer et al.

(2005). As discussed by Pencer et al. (2006a) it is advantageous

to work under conditions where the lipid head-group region is

also contrast matched. Lipid and component SLD are deter-

mined using known atomic scattering lengths (Sears, 1992),

and molecular and component volumes (Nagle & Tristram-

Nagle, 2000; Kučerka et al., 2005). In a 1:1 DPPC–DLPC

mixture, chain deuteration of 57 mol% of the DPPC lipid

fraction gives a mean acyl-chain region SLD of �2.0 �

10�6 Å�2, close to that of the lipid head-group region (�1.8 �

10�6 Å�2). Dispersion of lipids in 36 mol% D2O (�2.0 �

10�6 Å�2) yields contrast matching conditions of the mean

lipid SLD.

4.4. Small-angle neutron scattering

SANS measurements were performed using the 30 m NG7

instrument (Glinka et al., 1998) located at NIST (Gaithers-

burg, MD). For sample-to-detector distances (SDD) of 1, 4

and 10 m, 5.5 Å-wavelength (�) neutrons (��=� = 10%) were

used, while 8 Å neutrons were used for a SDD of 12 m. The

total range in scattering vector covered was 0.003 < q <

0.5 Å�1. SANS data were reduced and corrected for sample

transmission and background using IgorPro (WaveMetrics,

Lake Oswego, OR, USA) with subroutines provided by the

NIST Center for Neutron Research (NCNR) (Kline, 2006).

Note that, for all samples, data collection times were 20, 10

and 5 min for 12, 4 and 1 m SDD, respectively. Unfortunately,

the reduced intensity for samples in 36% D2O, owing to low

contrast, resulted in poor counting statistics in the low-q range.

We estimate that between 1 and 2 h of data collection time per

sample would be required at 12 m SDD in order to obtain a

significant improvement in signal to noise for ULV in 36%

D2O.

4.5. Data analysis

SANS data were analyzed using a non-linear least-squares

fitting routine, MINUIT (James, 2007), that was linked with

the program written by one of the authors (NK). Fitting

routines were written in C++ and implemented in the Tcl/Tk

environment (http://www.tcl.tk/). During data fitting, para-

meters could be fixed or loosely constrained using a harmonic

potential (Bayesian method). Details of fitting constraints will

be discussed in the Results section below.
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5. Results

5.1. Vesicle characterization

In order to characterize possible changes to vesicle struc-

ture due to changes in temperature, scattering functions were

measured for ULVs composed of 1:1 mixtures of DPPC and

DLPC at 303 and 293 K, using hydrogeneous lipid mixtures in

D2O. Under these contrast conditions, the membrane SLD is

essentially laterally homogeneous, even if the lipid lateral

distribution is not, as the lipid acyl chains of DLPC and DPPC

have essentially the same SLD (�0.38 � 10�6 Å�2 and �0.37

� 10�6 Å�2, respectively). Under these contrast conditions,

we can expect to measure the vesicle form factor, the

heterogeneous radial SLD, and the homogeneous lateral or

angular SLD. Scattering curves shown in Fig. 5 are fit well by

the form factor for laterally homogeneous vesicles allowing us

to determine the vesicle mean size, polydispersity and the

thickness of the acyl-chain and head-group regions (Table 3).

We find that the vesicle structure remains essentially

unchanged on cooling from 303 to 293 K, showing only a 10%

decrease in vesicle mean radius and a small increase (�2 Å) in

thickness. As discussed, for laterally heterogeneous vesicles,

the membrane thickness may be different in the domain and

vesicle regions. If domains are present for DLPC–DPPC ULVs

at 293 K, then these results suggest that, for the SANS range

examined, the form factor is relatively insensitive to lateral

variations in membrane thickness.

5.2. Detecting domains

As discussed by Pencer et al. (2006), the optimal contrast

conditions to detect membrane domains differ significantly

from those required to measure the vesicle form factor. Thus,

measurements were also performed to characterize domains in

1:1 mixtures of DPPC and DLPC, with 57 mol% of the DPPC

chain deuterated in 36% D2O. Under these conditions, the

scattering contrast is minimized when DPPC and DLPC are

homogeneously mixed in the membrane (i.e. at high

temperature). Cooling the ULV from 303 to 293 K produces

lateral segregation, as indicated by the excess scattering signal

from the ULV (Fig. 6). This signal arises from the contrast

between compositionally distinct ULV domains and the

medium.

5.3. Domain size and SLD

In fitting the data using the various models described above

(and in the Appendices), we constrain a number of para-

meters, based on estimates from known physical quantities.

The mean acyl-chain SLD (�2.0 � 10�6 Å�2) and head-group

SLD (�1.8 � 10�6 Å�2) were calculated from known lipid

component volumes and scattering lengths (Nagle & Tristram-

Nagle, 2000; Kučerka et al., 2005; Sears, 1992). The head-group

and acyl-chain thicknesses were constrained by a harmonic

potential to be close to those values found from the fits shown

in Fig. 5. We denote the four models used to fit the data as

follows: ‘cap’, corresponding to a single circular domain,

‘decoupled caps’, corresponding to independent circular
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Figure 5
Small-angle neutron scattering from ULVs composed of 1:1 mixtures of
DPPC and DLPC taken at 293 (lower curve) and 303 K (upper curve) in
100% D2O. Symbols correspond to experimental data and solid lines
show the fits to the data using the form factor for laterally homogeneous
vesicles. The curves have been shifted vertically to facilitate viewing.

Figure 6
Small-angle neutron scattering from ULVs composed of 1:1 mixtures of
DPPC and DLPC. 57 mol% of the total DPPC content corresponds to
chain perdeuterated DPPC and the medium was composed of 36% D2O.
Symbols correspond to measurements taken at 293 (upper curve) and
303 K (lower curve) and solid lines are fits to the data.

Table 3
Fitting results for hydrogeneous DPPC:DLPC vesicles.

T (K) R (Å) � (Å) DH (Å) 2DC (Å)

293 277.1 � 4.3 66.9 � 2.8 13.1 � 4.3 18.8 � 8.6
303 303.2 � 7.2 79.7 � 4.3 12.6 � 4.3 17.8 � 8.6



domains on the inner and outer membrane monolayers (see

Appendix A), ‘sym annulus’, an equatorial annular region

bounded by the same angle on the top and bottom (see

Appendix B), and ‘asym annulus’, an annular region bounded

by different angles on the top and bottom (also described in

Appendix B). The domain (minority phase) and vesicle

(majority phase) SLD, and domain size (a1) determined from

fits using the various models are summarized in Table 4, while

the corresponding fits are shown in Fig. 6.

In fitting the data, we find that the ‘decoupled caps’ model

produces a scattering curve that is exactly the same as the ‘cap’

model. In the case of the ‘decoupled caps’, however, the fitting

produces unphysical results, in particular, a domain acyl-chain

SLD greater than that for fully deuterated DPPC. It is also

notable that, above q ’ 0.01 Å�1, all four scattering curves

superimpose. Because of the relatively poor counting statistics

of the data at low q (i.e. q < 0.01 Å�1), all four models give fits

of equivalent quality, despite the different shapes of the

scattering curves in this range. Thus, while, on one hand,

differences in the form factors of the various models have the

potential to uniquely determine the size and shape of domains,

on the other hand, such a distinction requires significant data

collection time at long SDD.

Interestingly, while all four models give equivalent quality

fits to the SANS data over the entire q range obtained, each

model provides a different set of parameters for the domain

area, a1 and domain and vesicle SLD. As discussed in x4 and

above, longer data collection times are required to obtain the

necessary statistics to distinguish between the various models.

5.4. Estimating domain composition

For a two-component mixture that is laterally segregated,

the SLD of the two phases can be used to determined the

compositions of both phases. Rearranging equation (40) we

obtain

n1;1 ¼
V1 �1 � �1;2

� �
V1;1 �1;1 � �1;2

� � ; n2;1 ¼
V2 �2 � �2;2

� �
V2;1 �2;1 � �2;2

� � ;
n1;2 ¼

V1 �1 � �1;1

� �
V1;2 �1;2 � �1;1

� � ; n2;2 ¼
V2 �2 � �2;1

� �
V2;2 �2;2 � �2;1

� � ;
ð42Þ

where n1;i, V1;i and �1;i are the number, molecular volume and

SLD of lipids of species i in region 1.

The molar fraction of lipids of species 1 in region 1, x1;1, and

species 1 in region 2, x2;1, can then be calculated from

x1;1 ¼
n1;1

n1;1 þ n1;2

¼
V1;2 �1 � �1;2

� �
V1;2 �1 � �1;2

� �
� V1;1 �1 � �1;1

� � ; ð43Þ

and

x2;1 ¼
n2;1

n2;1 þ n2;2

¼
V2;2 �2 � �2;2

� �
V2;2 �2 � �2;2

� �
� V2;1 �2 � �2;1

� � ; ð44Þ

where the parameters �1;1 and �1;2 are calculated from the

scattering lengths and molecular volumes of lipids of type 1

and 2 in each phase, and �1 is determined from a fit to the data

using one of the form factors described here. Known values or

estimates for the molecular volumes of DPPC and DLPC in

the gel and fluid phases can then be used to calculate the

compositions of the domain and vesicle regions. Using the

same structural parameters given in x3.1, we calculate domain

compositions for the various models, summarized in Table 5.

In Fig. 7, we show a reproduction of the DPPC–DLPC

phase diagram, as obtained by van Dijck et al. (1977). Note

that the phase boundaries have been lowered by 2.5 K to

account for the suppression of the transition temperature of

deuterated DPPC compared with hydrogeneous DPPC

(Katsaras et al., 1997). For any given temperature, the
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Table 4
Fitting results for heterogeneous vesicles.

‘Model’ refers to the various form factors used to fit the data. �v is the acyl-
chain SLD of the majority phase (vesicle), �d is the acyl-chain SLD of the
minority phase (domain), and a1 refers to the fraction of total vesicle area
occupied by the domain.

Model �v (Å�2) �d (Å�2) a1

Cap 1.8 � 0.06 � 10�6 3.4 � 0.1 � 10�6 0.13 � 0.01
Decoupled caps 1.71 � 0.08 � 10�6 4.0 � 0.1 � 10�6 0.13 � 0.01
Sym annulus 1.51 � 0.05 � 10�6 2.2 � 0.1 � 10�6 0.23 � 0.01
Asym annulus 1.5 � 0.1 � 10�6 2.4 � 0.1 � 10�6 0.44 � 0.01

Table 5
Domain and vesicle compositions from fit results.

Model xv xd

Cap 0.46 � 0.03 0.80 � 0.04
Sym annulus 0.39 � 0.03 0.50 � 0.03
Asym annulus 0.39 � 0.03 0.55 � 0.03

Figure 7
Phase diagram for DPPC–DLPC mixtures (solid lines) adapted from van
Dijck et al. (1977). Note that, as discussed in the text, the phase
boundaries have been shifted by 2.5 K to account for the suppression of
the transition temperature of deuterated DPPC as compared with
hydrogeneous DPPC. Also shown (solid symbols) are phase boundaries
at 293 K determined from the compositions of phases given in Table 4.
The boundaries for circular (caps), symmetric annular and asymmetric
annular domains are given by solid squares, circles and triangles,
respectively.



composition of the liquid and solid phases are given by the

boundaries of the solid–liquid coexistence region, on the left

and right sides, respectively. Thus, at 293 K we would expect,

based on the phase diagram, to find molar fractions of 0.28 and

0.84 in the liquid and solid phases, respectively. For the

purpose of comparison, compositions determined from fits to

the SANS data are also shown (solid symbols) on the phase

diagram.

We find, based on the estimated compositions summarized

in Table 5, that the circular domain model gives results that are

closest to those expected from the phase diagram. It is worth

noting, however, the influence of molecular volume on our

calculation of the the domain compositions. If we use the lipid

gel phase volumes to calculate the compositions of both

regions, we obtain molar fractions of 0.39 and 0.80 in the liquid

and solid phases, respectively, while using liquid lipid volumes

yields compositions of 0.46 and 0.92 for the liquid and solid

phases. Thus, the calculated molar fractions of the phases

depend significantly on the initial estimates of molecular

volume. Nevertheless, even with �10% uncertainties in

composition, the circular domain model provides the best

agreement with the known phase diagram.

6. Conclusions

We have outlined a general approach to the analytic calcula-

tion of form factors for laterally heterogeneous vesicles. We

have examined the special case of cylindrically symmetric

heterogeneous vesicles and derive specific equations for

circular and annular domains. Using the illustrative case of

circular domains in a binary mixture, we have shown a number

of steps that simplify the application of the heterogeneous

form factor, such as truncation of the series representation and

the implementation of the separated form factor approach.

Fits to experimental data and comparison among the results

from several analytic models show that the circular domain

form factor provides the best agreement with predictions from

experiment. However, as discussed in the Introduction, it is not

clear that single circular domains should appear in a solid–

liquid mixture. Observations from fluorescence microscopy

suggest that DPPC:DLPC mixtures should, in fact, show

highly irregular domains. It may be that, under certain

conditions, the form factor from vesicles showing a variety of

irregular domains resembles that of vesicles with single

circular domains. Likewise, membrane curvature (i.e. vesicle

size) could also play a role in potential differences between

the behaviour of giant (micrometre-sized) and the 30 nm-sized

vesicles of this study.

In an upcoming study, we intend to perform systematic

SANS measurements, as a function of temperature and

composition, on binary mixed ULVs. Comparison of SANS

results with known phase diagrams will allow us to determine

whether the circular domain (or other models) can be effec-

tively used to map domain compositions and phase boundaries

in mixtures. Additional development of model independent

methods to characterize domains (e.g. Pencer et al., 2006a) is

also underway.

APPENDIX A
Decoupled bilayers

When domains on the inner and outer bilayer leaflets are no

longer in register, or become completely decoupled, the

scattering amplitude can be calculated asZ
UðrÞ exp �iq � rð Þ d3r

¼
2

q
ZWðq;RÞ þ

1

q
Z0;inðq;RÞX0ð�inÞ

þ
1

q

X1
l¼1

2l þ 1ð ÞPl cos �q;in

� �
Zl;inðq;RÞXlð�inÞ

þ
1

q
Z0;outðq;RÞX0ð�outÞ

þ
1

q

X1
l¼1

2l þ 1ð ÞPl cos �q;out

� �
Zl;outðq;RÞXlð�outÞ; ð45Þ

where �in and �out are the angles defining the domains on the

inner and outer leaflets (see Fig. 8), �q;in and �q;out are the

angles between the scattering vector q and the axes of the

domains. The functions Zðq;RÞ and Xð�Þ are as before, except

that Zinðq;RÞ and Zoutðq;RÞ are evaluated only on the inner

and outer monolayers, respectively.

If we assume that the domains freely diffuse with respect to

one another, then the orientation averaged scattered intensity

is calculated as

1

2

Z Z
UðrÞ exp �iq � rð Þ d3r

� �2

sin �q d�q

¼
2ZWðq;RÞ þ Z0;inðq;RÞX0ð�inÞ þ Z0;outðq;RÞX0ð�outÞ

q

� 	2

þ
1

q2

X1
l¼1

ð2lþ1Þ2 Z2
l;inðq;RÞX2

l ð�inÞþZ2
l;outðq;RÞX2

l ð�outÞ

 �

:

Note that a number of possible cross terms vanish because of

both the orthogonality of PlðxÞ and also because
R

PlðxÞ dx = 0

for l 6¼ 0.

The same type of argument can be repeated for more than

two rafts, considering of course that there is no interaction

between the inner and outer rafts. For the order l = 0, we have
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Figure 8
Schematic of a vesicle with inner and outer domains out of register. The
inner domain is bounded by angle �in, while the outer is bounded by �out.



the square of the sum of contributions from all rafts, while for

all orders l � 1, we have no mixed terms between apposing

rafts, only square terms and correlation terms between inner

(outer) rafts.

APPENDIX B
One annular domain

An important category of heterogeneous vesicle is that of the

annular sector domain. In this case, instead of a circular raft,

one has a ‘circular band’ (see Fig. 9). The problem is very

similar to the circular raft case, the only difference being the

evaluation of the angular component. Suppose that the

annulus is bounded by angles �1 and �2, where �1 is the angle

corresponding to the smaller conical surface through the

centre of the vesicle, and �2, the angle corresponding to the

larger one. In other words we have

wðcos �Þ ¼ 0 for 0 � � <�1; ð46Þ

wðcos �Þ ¼ 1 for �1 � � � �2 ð47Þ

and

wðcos �Þ ¼ 0 for � > �2: ð48Þ

In this case, one obtains

Xl;annð�1; �2Þ ¼

Z�2

�1

Plðcos �Þ sin � d�

¼

Z�2

0

Plðcos �Þ sin � d� �

Z�1

0

Plðcos �Þ sin � d�

¼Xlð�2Þ � Xlð�1Þ: ð49Þ

In contrast to the circular raft case, maxl> l0
ðYlÞ decreases with

l0. There are no simple approximate formulae, except for the

equatorial case, where

�1 ¼ �=2� �;

�2 ¼ �=2þ �;
ð50Þ

with � small. In this case Xl;annð�1; �2Þ is computed directly,

X0ð�1; �2Þ ¼ 2 sin �: ð51Þ

For l � �=ð2�Þ, one can estimate the angular factor for small

rafts,

X2l;annð�1; �2Þ ’ 2ð�1Þl
1� 3� . . .� ð2l � 1Þ

2� 4� . . .� 2l
sin �;

X2lþ1;annð�1; �2Þ ’ 0: ð52Þ

The rest of the calculation for a single annulus is completely

analogous to the calculation for a single circular raft.

APPENDIX C

The SFF–Laplace method

ULVs are typically polydisperse in size (e.g. Pencer & Hallett,

2003; Kučerka et al., 2004). Polydispersity is frequently taken

into account in data fitting procedures, via convolution of the

calculated intensity with a size distribution function. However,

this process becomes fairly time-consuming, owing to the

multiple integrations required in the calculation of the scat-

tering curve. This problem can be avoided through the use of

the separated form factors (SFF) approach (Kiselev et al.,

2002) together with a Laplace transform, presented recently

by Pencer et al. (2006).

The integrated cross section given in x2.1 depends on the

vesicle radius, R, through the form factors. For a polydisperse

system it has the form

IðqÞ ¼

Z
GðRÞIðq;RÞ dR; ð53Þ

where Iðq;RÞ is defined in, for example, equation (50). The

size distribution function, G(R), can be represented by the

Schulz distribution as follows,

GðRÞ ¼
zþ 1

Rm

� �zþ1
Rz

�ðzþ 1Þ
exp
�Rðzþ 1Þ

Rm

� �
; ð54Þ

where Rm is a mean radius and the variance is �2 = R2
m=ðzþ 1Þ.

Following the idea of the SFF method, when the thickness

of the shell is much less than the vesicle radius, we can sepa-

rate the parts corresponding to the symmetric bilayer and

vesicle using a modified form of Zlðq;RmÞ given by

Zlðq;RmÞ ¼ 2qR2
m jlðqRmÞ

Z t=2

0

vðzÞ cosðqzÞ dz: ð55Þ

Employing the Laplace transform, as given by Pencer et al.

(2006), we can write

IðqÞ ¼ g1

�X1
l¼0

ð2l þ 1Þ2½FM
l ðqÞ	

2
L

�
usRm�1

½FTS
l ðq;RÞ	2

	�
ð56Þ

where g1 = szþ1=�ðzþ 1Þ and s = ðzþ 1Þ=Rm.

The form factor is then separated into the planar membrane

form factor (that does not depend on a vesicle radius) and thin

shell vesicle form factor. The planar membrane form factor is

given by
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Figure 9
Schematic of a vesicle with an annular domain. The annulus is bounded
by angles �1 and �2.



FM
0 ðqÞ ¼

8�

q

Zt=2

0

½vðzÞX0ð�Þ þ 2WðzÞ	 cosðqzÞ dz;

FM
l ðqÞ ¼

8�

q

Zt=2

0

vðzÞ cosðqzÞ dz;

ð57Þ

while the form factor corresponding to the thin shell with a

radius Rm is given as

FTS
l ðq;RmÞ ¼ R2

m jlðqRmÞ: ð58Þ

The Laplace transform can then be expressed as

L

�
usRm�1½FTS

l ðq;RmÞ	
2

	

¼
�ð4þ 2l þ sRmÞ

�2ð3=2þ lÞ

�q2l

4lþ1s4þ2lþsRm

� 3F2

�
1þl;

4þ2lþsRm

2
;

5þ2lþsRm

2
;

3þ2l

2
; 2þ2l;�

4q2

s2

�
;

ð59Þ

where 3F2 is a generalized hypergeometric function (see, for

example, Weisstein, 1998, 1999).
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