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ABSTRACT: A practical method of calculating the small-angle scattering intensity and
the density correlation function from the phase size distribution is presented for a
sample with a random two-phase morphology. The correlation function can be calcu-
lated in terms of joint probability distribution functions of the phase size distributions
of the two individual phases with information from the chord length distribution. The
phase size distribution is approximated as a weighted sum of exponentials, which is
then transformed analytically into the correlation function and hence the small-angle
scattering for any combination of phase size distributions of the two phases. This
represents an extension of the Debye method for materials with more complex phase
size distributions. The inverse problem of calculating the phase size distributions from
the small-angle scattering requires a thermodynamic model or simplifying approxima-
tion. An example of the reverse transformation is given for a nanoporous polymer thin
film. © 2004 Wiley Periodicals, Inc.* J Polym Sci Part B: Polym Phys 42: 3070-3080, 2004
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INTRODUCTION

Small-angle scattering has been widely used to
measure characteristic sizes of an isotropic two-
phase system for phases with uniform internal
scattering density (and, therefore, no contribution
to the scattering from the internal structure of
either phase) and sharp interfaces between the
phases (and thus, no contribution to the scatter-
ing from the interfacial structure).! Recently, this
technique has been used to measure average pore
sizes and distributions in nanoporous thin films
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made from polymeric precursors.>~* Although
certain methods exist for specific morphologies
such as polydisperse spheres embedded in a con-
tinuous matrix,>5~® no general fitting method is
available for random, nonspherical morphologies.

Porod™® contributed two basic principles to
two-phase scattering: the scattering invariant
and the high q scattering limit, which has been
termed Porod’s law:

K, (-
Q= 272 f qZI((I) dq = V(ps — PB)2¢A¢B

0

(D

The invariant @ is the total scattered intensity
[I(q)] integrated over all values of the scattering
vector [q = 47 sin(6/2)/A, where 6 is the scattering
angle and A is the wavelength]. @ is a measure of
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the scattering volume (V), the scattering contrast
of phases A and B (p, and pg), the volume frac-
tions of phases A and B, (¢, and ¢p), and the
scattering contrast factor (K,,) based on the com-
position of the phases.

Porod’s law'® gives the limit at high q values:

q‘I(q — ) = 27(py — pp)*S (2)

where S is the total surface area of the interfaces.
In eqs 1 and 2, contrast factors are used that do
not normalize the scattered intensity to the scat-
tering volume. Two important results of these
equations are the high q power law of scattering
from an ideal two-phase system of q * and the
capability of calculating characteristic phase
sizes from small-angle scattering. The ratios of
the calculations in eqs 1 and 2 give the V/S ratio,
which gives the average chord length of phase i
(1, as follows:

R4

Small-angle scattering, therefore, can be used to
measure the number-average phase size for a
two-phase morphology with any size distributions
of the individual phases. This relationship can be
used to determine the sizes of phases from scat-
tering but contains no information on the nature
of the size distributions present.

Debye et al.»'° showed that the scattering from
a dense two-phase material is related to the den-
sity pair correlation function through a Fourier
transform:

* sin(qR)
I(q) = 47(ps — pp)*Pads f R*y(R) TaR dr

0

4)

where y(R) is the correlation function defined by

Y(R) = jn(x)n(erR)/f n(x)* (5)

x x

and the function n(x) is the scattering contrast at
position x. The integration is taken over all space,
giving the correlated density at distance R. Debye
et al. examined a two-phase system, with every

point located in the sample being either pure A or
pure B.

Scattering from a two-phase system made up of
spherical objects dispersed in a continuous phase
of a contrasting density has been calculated with
a Percus—Yevick formalism.5~® The spheres can
be monodisperse or polydisperse and are ordered
by energy constraints. The simplest constraint is
nonoverlap of the spheres,®’ but additional con-
straints of ionic interactions or excluded sphere
radius have been added.® Although such models
are highly appropriate for morphologies that
truly have a spherical phase, such as preformed
spheres dispersed in a medium,® they are not
appropriate for morphologies that have cocon-
tinuous phases or extremely broad size distribu-
tions. The fits are for model distributions, such as
a Shultz distribution or a lognormal distribution.
More complicated distribution types such as bi-
modal distributions are possible but have not
been reported.

Two-phase morphologies that result from pro-
cesses such as spinodal decomposition have also
been described.!! The scattering from such sys-
tems can be used to measure structural parame-
ters but is necessarily constrained by systems
that obey the assumed thermodynamic condi-
tions. Statistical descriptions for random mor-
phologies have also been described.'®'3 They are
useful methods but require fitting statistical pa-
rameters that are often not intuitive.

Mering and Tchoubar'*'” used small-angle
scattering to calculate the chord length distribu-
tion of samples with a two-phase morphology.'81?
The second derivative of the pair correlation func-
tion can be written in terms of the summation of
joint phase size distributions. The joint probabil-
ity distribution of series of alternating phases of
type A and type B with i total A phases and j total
B phases is designated P,;p;. Because of the al-
ternation constraint, i and j can differ by no more
than 1:

9*y(R)

ORZ <l> = E PAHB,(R) + PA,-B,-,l(R) - 2PA,B,¢(R)

=1

:PA+PB_2PAB+PABA+PBAB_2PABAB+'"
(6)

where P,gp; is equal to Pg(R) and Pyqp, is equal
to P,(R). The others are defined by eq 7. Equation
8 defines the characteristic scattering length ({(/)):
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R
Py p. (R) = f Py (R¥)Py(R — R¥) dR*  (7)
0

(1) = ¢y J "RP,(R) dR - ™ J "RPyR)AR (8)

The nomenclature chord length distribution is
somewhat misleading and should not be mistaken
for a phase size distribution. Equation 6 demon-
strates the difference between a phase size distri-
bution and a chord length distribution. The indi-
vidual terms P, and Py are the phase size distri-
butions of phases A and B, respectively. The
entire right-hand side of eq 6 is called the chord
length distribution and contains distribution
functions of all possible multiple phase combina-
tions.*~17 Although it is an important character-
istic of the morphology, it is far less intuitive than
the size distributions of the individual phases and
has certain characteristics, such as negative val-
ues, which are, of course, impossible for the indi-
vidual phase size distributions. Although the Me-
ring—Tchoubar formalism describes the relation-
ship between individual phase size distributions
and the second derivative of the correlation func-
tion, no practical method has been described to
convert an arbitrary phase size distribution into
small-angle scattering and vice versa.

Smarsly and coworkers'®~2! analyzed small-
angle scattering with parameterization methods
in which functional forms are assumed for the
chord length distribution, which can be analyti-
cally transformed into small-angle scattering and
fit to experimental results. This method advances
the ability to extract information from experimen-
tal results but does not attempt to analyze the
phase size distributions of the individual phases.

A Debye-type scatterer has an exponential cor-
relation function, which results in a related expo-
nential phase size distribution.'®!* Therefore, ex-
pressing a phase size distribution as a sum of
exponentials is an appropriate form of data fit-
ting. In this article, a procedure is introduced in
which a phase size distribution can be fit with a
weighted series of exponential functions of dis-
tance R. These functions can then be analytically
transformed into a correlation function and hence
small-angle scattering.

THEORY

The simplicity of eq 6 does not readily transfer
into simplicity for the calculations necessary for

finding an analytical solution for transformations
of an arbitrary phase size distribution into a cor-
relation function. Exact transformations for cer-
tain distributions are possible but are often cum-
bersome. It is possible, however, to use a trun-
cated series of terms from eq 6 to calculate a
correlation function from a phase size distribu-
tion. Truncations are sometimes made to include
a single additional term in addition to the first
term.’ 17 An example is given of a model distri-
bution to show how the number of terms used
affects the calculation of the correlation function.

Because a Debye type of scatterer has an expo-
nential phase size distribution, it is proposed that
a sum of exponentials is an appropriate form of
data fitting:

P(R) = D, w,exp(—R/R;)/R; 9)

13

The phase size distribution is approximated by a
series of exponentials weighted by a factor (w;)
having a characteristic length (R;). Each phase
can be represented by any series of terms, with
the phases having the same or different terms.
For simplicity, subscripts A and B, denoting the
two individual phases, are not shown in the right-
hand side of eq 9.

Equation 7 can be used to calculate P,g(R)
from eq 9. If all values of R; are different, the
result is given by eq 10:

Ps(R) = EE wiwj(EXP(_R/Ri)

iJ

— exp[~R/R)JR, — R) (10)

where i and j represent components A and B,
respectively. If R; is equal to R}, then the integra-
tion gives

P.s(R) = X w!R exp(—R/R) (11)

Further terms can be calculated with combina-
tions of eqs 7, 10, and 11. The exact functional
form of the terms for joint distributions rapidly
grows in complexity for larger numbers of phase
combinations. The exact enumerations of the
equation become lengthy after only a few terms.

However, combinations of exponentials with
different R; and R; terms produce the same expo-
nentials with multiplicative factors, which are
functions of w;, w;, R;, and R;. When the R; and R;



TRANSFORMATION OF PHASE SIZE DISTRIBUTION

3073

0.2 |
|
| broad
| --------- exponential
o5\ mm==- narrow

[
[

g

I’.‘-'\‘ .
’ "-‘_ ~
0.05 |1 % %
f] S
(] .
'] W
! : “"-‘-.‘ L] |
...'!-d,__‘-‘“‘
g — - X _'—.—-*-.:‘r-'u*-ﬁtn.'w.—mu-———l
0 10 20 30 40 50
R
Figure 1. Phase size distributions of the model functions described by eqs 13-15. [Color

figure can be viewed in the online issue, which is available at www.interscience.wiley.com]

terms are identical, the integration will result in
exponentials with the same arguments but mul-
tiplied by polynomials in R, as demonstrated by
eq 11. The rules for such a series of integrations
are easily programmed, and tables can be kept of
the multiplicative factors (4,,,) in the following
form:

k-1

PAkBk(R) = E E AnmRneXp(_R/Rm) (12)

allm n=0

where subscript % indicates the number of phases,
m indicates the exponential term of eq 9, and n
indicates the power of R in the polynomial.

As an example, three representative phase size
distributions are considered: an exponential De-
bye type of distribution, a bimodal and broad ex-
ponential distribution, and a narrow distribution.
The distribution parameters are shown in eqs
13-15, respectively:

P,(R) = exp(—R/10)/10 Exponential
(13)

P,(R) = (8/9)exp(—R/5)/5
+ (1/9)exp( — R/50)/50 Broad (14)

P,(R) = — 0.012exp( — R/1.0)/1.0
— 0.045exp( — R/3.0)/3.0
+ 1.462exp( — R/7.78)/7.78/7.78 Narrow (15)

In this example, the volume fraction of the A
phase is 2/3, and that of the B phase is 1/3. The
values of the parameters were chosen to give
identical number-average A phase sizes
(J3 RP(R) dr/fi P(R) dr = 10). The higher order
average ([ R*P(R) dr/f; RP(R) dr) gives values of
20.0, 60.0, and 16.87 for the exponential, broad,
and narrow distributions, respectively. The units
of the distributions are arbitrary in these exam-
ples and are left off for clarity. Figure 1 is a plot of
the three phase size distributions showing the
three model distributions. The exponential (De-
bye) distribution is the random case, which is
common for many two-phase systems; the other
two examples are considerably narrower and
broader than the random case. Equations 6 and
12 can be used to calculate the second derivative
of the correlation function via the addition of the
terms of the summation. It is also simple to inte-
grate these terms twice to produce the correlation
function itself. This form is more readily com-
pared with the scattering results.

Figure 2 is a plot of the joint phase size distribu-
tions calculated from eqs 13-15. Joint probability dis-
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Figure 2. Joint phase size distributions of the model functions described by egs
13-15. The curves from left to right show the joint phase size distribution of AB, A,B,,
A,B,, and A,B.. [Color figure can be viewed in the online issue, which is available at

www.interscience.wiley.com]

tributions are calculated up to a total of 14 consecutive
phases in this figure. Figure 3 shows the correlation
functions of the three model distributions based on
truncated summations of eq 6. For an even number of
phases, the deviation due to the truncation is down-
ward, but the point of deviation becomes much larger
than the average phase size with a total number of
phases that is easily calculated.

Converting this correlation function into small-
angle scattering is not practical, however. The
transformation of eq 4 requires a correlation func-
tion that goes to infinite correlation distances,
and a transformation of a truncated sum of eq 6
results in anomalous oscillations in the scatter-
ing. In principle, a transformation of scattering
data to the correlation function could be made
with standard techniques,! and these correlation
function results could be compared with the re-
sults shown in Figure 3. Transformations of scat-
tered intensity are always limited by the finite q
range of the small-angle scattering data. Trunca-
tions of the scattering model used to fit the data
are an additional source of uncertainty but can be
eliminated by the use of transformation methods,
which account for the complete set of terms in eq
6 without any truncation.

The results shown in Figure 3 also exemplify
the difficulty in using truncated series from eq 6

to describe the scattering from dense two-phase
systems, as previously described.'*~'” Approxi-
mations of this sort are only valid for systems in
which one phase is extremely dilute. A preferable
method involves using the limit of an infinite
summation of the probability terms of eq 6, which
is possible through transformation methods.

LAPLACE TRANSFORMATION

Mering and Tchoubar'*~'” showed that transfor-

mation methods provide a practical method of
calculating the correlation function from a phase
size distribution in the limiting case of an infinite
summation of all the factors in eq 6. If a Laplace
transformation is taken of both sides of eq 6, eq 16
results, a(s) being the transform of P,(R), b(s)
being the transform of Pg(R), and @ (s) being the
transform of 5%y/6R>:

a(s) + b(s) — 2a(s)b(s)
1 —a(s)b(s)

Qy(3)¢B J R\P(R,) dR, =

0

(16)

Because the probability terms for phases A and B
are sums of exponentials, as given by eq 9, the a(s)
and b(s) terms are also simple summations:
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Figure 3. Truncated correlation functions of the model functions described by eqs
13-15 from sums of joint phase size distributions. [Color figure can be viewed in the
online issue, which is available at www.interscience.wiley.com]

wi/R;
a(s) = E m (17)

i

All of the terms in eq 16 can be expanded into
polynomials in s. The problem becomes equiva-
lent to problems of signal analysis of electrical
circuits of inductors, resistors, and capacitors.
Finding the roots of the denominator and using
partial fraction expansion generates a sum of
terms that undergo a simple inverse transforma-
tion into three types, exponentials terms, expo-
nential sine terms, and exponential cosine terms:

a*y(R)
oR?

= > Xexp(—R/R;)

+ >, Yexp(—R/R))sin(R/R,)
J

+ > Z,exp(—R/R,)cos(R/R;) (18)

k

where the X, Y, Z, and R terms are solutions to
roots and expansion constants of the system.
These terms can be easily integrated to yield the
values of y(R), which has exactly the same func-
tional form as eq 18.

Another advantage of assuming a fitting func-
tion of a sum of exponentials, as in eq 9, is that
they can easily be transformed into the scattered
intensity through eq 4. The transformations of
the three types of terms are given by eqs 19-21:

c sin(qR) 2R3
R exp(—R/Rl) qT dR = W (19)

0
- . sin(qR)

R2%exp(—R/R,)sin(R/R,) — 5 — dR

qR

0

_ 2Ral3 — o' + 267 — BT+ 23B* + D] o

[a* +20%(8* = 1) + (B* + D’
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Figure 4. Scattering intensity of the model functions described in the text. [Color
figure can be viewed in the online issue, which is available at www.interscience.wiley.

com]
oc sin(qR) made for the three model distributions. Random
J R2%exp(—R/R,)cos(R/R,) “aR dR numbers (Ny) are generated in a rectangular dis-
0 q tribution between 0 and 1. Equation 9 is inte-

2RI - 3a* + (B + 1) — 2a%(8 — 1)]
T W r2@ oD@y @Y

where « is equal to R,/R, and B is equal to qR;.

Figure 4 is a plot of the calculated small-angle
scattering from the three model distributions.
The shapes and small-angle scattering intensities
vary greatly between the samples. The average
phase size is identical, however, as can be shown
by eqs 1-3. Figure 5 is a plot of I(q)q? versus q.
The area under the curve is equal to 27°Q. The
curves have very different shapes, but the areas
under them are the same (27°¢p dpgV = 571/6).
Figure 6 is a plot of I(q)q* versus q. The limiting
high q value in each case is 2mS = 1. The phase
sizes from eq 3 are R, = 10 and Ry = 5 for each
of the three distributions, as stated earlier.

MONTE CARLO CALCULATIONS

As a final test of the accuracy of the transforma-
tion method, Monte Carlo calculations have been

grated to give a cumulative probability, and eq 22
is solved with Newton’s method to give a phase
size Rg:

j > w,exp(—R/R;)/R; dR
Rr i

= E wexp(—Ry/R;) = Ny (22)

After 10,000 alternating A and B phases are gen-
erated, correlations are calculated between the
A—A combinations for values of the measuring rod
up to 50, and the process is repeated 100 times.
Figure 7 is a plot of the Monte Carlo calculated
y(R) values along with the results from the
Laplace calculations. Although the Monte Carlo
calculations offer no advantages over the Laplace
calculations in this example, they are a versatile
way of calculating correlations in more complex
systems. For example, if pores become filled with
a contrast matching fluid through capillary con-
densation, the resulting correlation function and
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Figure 5. Kratky plots of the model functions described by eqs 13-15. The areas
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hence small-angle scattering can be directly cal- tiphase morphologies or ones in which there are
correlations between neighboring phases can be

directly modeled. However, it is far more practical

culated through Monte Carlo methods when ana-

Iytical methods are unavailable. Similarly, mul-
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Figure 6. Porod plots of the model functions described by eqs 13-15. The high g
plateau is the Porod limit. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com]
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to fit morphologies that can be approximated by
phase size distributions made up of a sum of
exponential components with the Laplace trans-
formation method.

REVERSE TRANSFORMATIONS

The Laplace method is a practical way of trans-
forming any phase size distribution that can be fit
by a sum of exponentials into the scattering in-
tensity. The reverse procedure of calculating the
phase size distribution from scattering data can-
not be done because information is lost when
structural information is transformed into the
scattered intensity. Assumptions for the correla-
tions between the distributions of the two phases
need to be made, either thermodynamic or statis-
tical. An example of a fitting procedure for small-
angle neutron scattering (SANS) data involves
calculating the equivalent distribution of the two
phases; the two phases are assumed to have dif-
ferent average sizes but have the same distribu-
tion shape. This is the case when the A and B
phases are described by the distribution of eq 9
with w; (phase A) = w; (phase B) and R; (phase
A)/p, = R; (phase B)/¢g. Although such an ap-
proximation does not distinguish the differences

between the phases, it does provide an important
measure of the polydispersity as a whole.

SANS measurements were conducted at the
National Institute of Standards and Technology
Center for Cold Neutron Research 8-m facility.
The SANS experiments were carried out on a
nanoporous thin film designed for spin-on, nano-
porous, low-% dielectric materials. The description
of the SANS experiment and the data reduction
protocols are reported elsewhere.? The I(q) data
are reduced to an absolute intensity with second-
ary standards and appear in units of the scattered
intensity per unit of volume. Films of this sort
have been extensively analyzed by the Debye
model. A single example is given of a random
material that requires multiple exponential
terms in eq 9 for the fitting of the SANS data.

Figure 8 shows the fit of the SANS data; two
characteristic distances are assumed in eq 9. The
fits are made by nonlinear least squares, and the
uncertainties are one standard deviation based on
the goodness of the fit. The SANS uncertainties
are not plotted, and one standard deviation is less
than the symbol size. A fit is made of two expo-
nential terms in eq 9 by a nonlinear-least-squares
fit of the unweighted SANS intensity over a q
range of 0.011-0.150 A™', with the uncertainties
being one standard deviation based on the good-
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ness of the fit. The fit values are R; = 16.2 = 0.1
AR, =810+ 03A, w,; =0.962 = 0.031, and w,
= 0.038 * 0.001. The fit is better over the whole q
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Figure 9. Phase size distributions of the two fits shown in Figure 8. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com]
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range than a single Debye fit. Many nanoporous,
low-£ thin films have been successfully fit with a
Debye function.>* The data analysis procedure



3080 BAUER

calculates the invariant from the Debye func-
tional form of the scattering and uses additional
data from X-ray reflectivity to determine both the
wall density and the volume fraction pores. This
method cannot be used for morphologies such as
that present in the SANS example of Figure 8. If
a Debye equation is fit to the scattering, as shown
in Figure 8, the invariant calculated from the fit is
greatly underestimated. The Debye fit, which
strongly weights the low q region, gives an aver-
age pore size of 70.0 £ 0.4 A, whereas the two-
exponential fit gives 16.2 = 0.1 A. Figure 9 shows
the calculated phase size distributions of the two
types of fits. The Debye fit greatly overestimates
the pore size and does not find the bimodal dis-
tribution.

CONCLUSIONS

A practical method of transforming phase size
distributions of random phases into density cor-
relation functions has been demonstrated. The
computations are rapid and can produce density
correlation functions and hence scattered intensi-
ties to any necessary degree of accuracy. Phase
size distributions other than the single-exponen-
tial ones described by Debye et al.'° can be trans-
formed into density correlations. Examples have
been given of distributions that are broader than
the single-exponential distribution (Debye) and
narrower distributions that can lead to a peak in
the scattering. Also, the Laplace transformation
method uses information from the complete set of
probability terms and avoids any errors intro-
duced by a truncated series of the terms.

The transformation of the scattered intensity
into model phase size distributions is possible
with this method if assumptions are made of the
relationship between the phases. An example of
the transformation of small-angle scattering into
a phase size distribution shows that for some
systems, assuming Debye scattering produces sig-
nificant discrepancies in the phase size distribu-
tion in comparison to fitting with multiple expo-
nentials.
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