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Rheology and structure of worm-like micelles
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Abstract

Although worm-like micelles have been studied for over 20 years, the diversity of macroscopic behavior and the potential
analogy to polyelectrolytes has driven continued study. During the last year, development and application of more realistic
scattering models has yielded a deeper understanding of micelle structure. Comprehensive studies on systematic systems are
being reported that combine structural and macroscopic data. These studies provide the fundamental understanding necessary
to quantify the coupling between micelle structure and rheology. Finally, with increased understanding of these systems, there
is a growth in the number of novel applications of worm-like micelles. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Micelles tend toward elongated structures when the
packing parameter, p�� � Al, of the surfactant in-
creases towards p�1�2, where � is the volume of
the hydrophobic part of the surfactant, A is the
surface area occupied by the surfactant head group
and l is the extended length of the hydrophobic

� �portion 1 . Micelles are considered rod-like if the
length of the micelle is short compared to its persis-

Ž .tence length the length over which it is rigid , and
worm- or thread-like when the overall length, or
contour length, is much greater than its persistence
length. An analogy is drawn between worm-like micel-
lar systems and polyelectrolytes, although micelles
have the additional ability to break and reform, gain-

� �ing the moniker ‘equilibrium polymers’ 2 . The dy-
namics of these systems are of great interest, because
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subtle changes in the surfactant, counterion and added
electrolyte alter the dimensions, flexibility and inter-
actions of the micelles, leading to marked effects on
the macroscopic rheological behavior.

These systems already find uses as viscosity en-
hancers, but as our understanding increases, new ap-
plications form. Recently, worm-like micelles have
been considered as a novel sieving matrix for the
separation of DNA fragments by capillary elec-

� �trophoresis 3 , templates for asymmetric and aligned
� �nanostructures 4�6 and as drag-reduction additives

� �in district heating systems 7 . In all of these applica-
tions, knowledge of the structure and dynamics of the
worm-like micellar systems is vital for optimization of
the process.

Whether for the sake of fundamental understand-
ing, as model polyelectrolytes, or to develop new
applications, a detailed understanding of the relation-
ship between composition, micellar structure and
macroscopic rheology is vital. For this, tools are re-
quired to characterize micelle morphology and dy-
namics, and models are needed to relate these to
macroscopic behavior. Advances in each of these have
been made in the last few years.
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2. Structure

The structural length scales of worm-like micelles,
radius, persistence length and contour length, are
often disparate. Radii are typically a few nm, persis-
tence lengths are 10s of nm and contour lengths
range from 100s of nm to �m and larger. This dispar-
ity allows modeling of scattering to be broken down
into different regimes and attacked independently.
This fact, along with the observation that surfactants
scatter much more strongly than polymers in both
neutron- and light-scattering, has given rise to the
suggestion that these are model systems to explain

� �and study polyelectrolyte behavior 2,8 .
Early scattering models treated neutral chains with

contour lengths much greater than the persistence
length. Recent advances allow non-homogeneous and
non-axisymmetric radial cross-sections to be extracted
� � �9 , the excluded volume of the chains to be taken

� � �into account 10 , electrostatics to be incorporated
into the persistence length via existing theories for

� � �polyelectrolyte 8,10 ,11 and intermicellar interac-
� �tions to be included for rod-like micelles 12 . This

year has seen some of the first full fits of scattering
data from charged systems of worm-like micelles to
extract flexibility as a function of concentration and

� � �ionic strength 13 . A recent study extended struc-
tural characterization to systems more than 65-fold
greater than the overlap concentration, with added

� � � �screening electrolyte 9 ,13 .
Uncharged systems still exhibit pertinent areas of

research, as recent results on the change in micellar
� �dynamics at high pressures demonstrate 14 . Given

that structural analysis of weakly charged systems can
now be performed with confidence, whole new sys-
tems and behavior can be tackled. Comparison to
experimental data provides realistic measures of per-
sistence length and its dependence on concentration
and ionic strength. For a wide variety of systems,

� � �persistence lengths range between 20 and 40 nm 9 ,
although recent measurements of a system of sugar
surfactant, hexanol and water is much more flexible,

� �with persistence length closer to 10 nm 11 . Re-
evaluation of previous light-scattering studies showed
that earlier reports of much larger persistence lengths
are an artifact of neglecting intermicellar interactions

� � �in the analysis 9 .
The packing parameter is a strong function of

counterion and electrolyte, and several reports de-
monstrate these effects. Relatively small changes in
the structure of penetrating anionic counterions to
trimethylammonium-based surfactants show the vari-
ation in structural transitions of these systems
� � �15�18 . Systematic studies to investigate counter-
ion and, more important, electrostatic effects have
been initiated using mixtures of cationic�anionic sur-

� �� �factants 19 , variation of counterion inventory
� �through electrolyte composition 20,21 , ‘doping’ of

� � �non-ionic micelles with ionic co-surfactant 8,10 and
the use of ionizable surfactants based on tetrade-

� � �cyldimethylamine 9
Improvements in the resolution of cryo-transmis-

Ž .sion electron microscopy TEM have brought about
an increased number of direct structural probes of
worm-like micellar systems. Studies have demon-
strated that ‘endcaps’ have a larger diameter than the

� � �cylindrical body in Gemini surfactants 22 and char-
acterized the transitions from worm-like micelles to

� �branched systems 23 . While cryo-TEM is a powerful
tool in the characterization of structure, the danger of
shear during sample preparation has been demon-
strated and is a concern when working with shear-sen-

� � �sitive structures 24 ,25 .
Attempts to capture the structure of worm-like

micelles in the bulk have led to the formation of
� �novel aggregates 4,5 . By polymerizing the penetrat-

ing counterion in worm-like micelles based on the
cationic surfactant, polyelectrolyte�surfactant aggre-
gates are generated. The structural changes during
polymerization are sufficiently complex that the length
of the micelles is not maintained during polymeriza-
tion, but the cross-section is captured and the poten-
tial for generating novel particles exists.

3. Linear rheology

As the contour length increases, worm-like micelles
become entangled. A competition between reptation
and the breaking�reforming time of the micelles gives
rise to simple linear rheological behavior, often re-

� �ferred to as ‘Maxwell-like’ 26 . The linear behavior is
described by two parameters � a plateau modulus
Ž .G related to the entanglement density of the mesho

Ž .and a relaxation time � . This dominant relaxationR
time is simply the geometric mean of the reptation
and breaking�reforming times of the micelles. With
this concise description of viscoelasticity, a goal for
this field is to predict � and G from knowledge ofR o
the local micellar structure.

Many of the structural studies mentioned above
have also included characterization of the linear rhe-

� � �� �ology 18 ,19 ,27�29 . Since the relationship between
persistence length and rheology is not known, we
cannot predict rheology a priori. However, there has
been success in scaling the linear rheological proper-

� �� �ties with concentration 19 ,27,28,30 . A transforma-
tion from linear micelles to a branched system has
been quantified in several systems by observing in-

� � �� �creased fluidity 18 ,19 ,31,32 . Cryo-TEM has also
shown signs of branched systems, in agreement with

� � �rheological measurements 22 ,23 . The relationship
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between micelle stiffness and the onset of branching
is of considerable importance and a salient avenue of

� � �study 18 .
Mechanical rheometry possesses problems of in-

strument inertia and environment control, but linear
rheology can also be probed with microrheometery.
The Brownian motion of a colloidal polystyrene sphere
in worm-like CTAB�KBr solutions has been probed
using diffusing wave spectroscopy and the Maxwell

� �relaxation parameters extracted 33 .
Application of the single relaxation-time Maxwell

model to more complex or incomplete frequency data
is dangerous. The loss modulus deviates from simple
Maxwell behavior at higher frequencies as the
‘breathing modes’ or breaking and reforming time
scales influence the relaxation spectrum. As these
modes move closer to the dominant Maxwell relax-
ation time, the extraction of a single value of � isR
problematic. The inversion of the frequency data to
extract relaxation times is inherently ill-posed; this
problem has long been considered in extracting the
relaxation spectrum for polymer solutions and melts
from dynamic data. As more detailed analysis of the
dynamic data to extract multiple and coupled relax-

Ž � �.ation times continues see for example 30 , these
analytical techniques will need to be considered. It is
important to note that the high-frequency upturn in
the loss modulus must be characterized. While there
is potential to use this break point to characterize the

� �persistence length of the micellar mesh 27 , if the
frequency at which this is observed is close to the
dominant relaxation time, then the assumptions of a
‘fast-breaking’ micellar mesh is questionable � fit-
ting a model solely to the low frequency and cross-over
region will inadvertently omit pertinent dynamics.

4. Non-linear rheology

At shear rates high enough to disturb the equilib-
rium structure, non-linear rheological responses are
observed. Worm-like micellar systems exhibit a rich
rheology, with many distinct phenomena not observed
in other macromolecular species. Dilute solutions of
cationic micelles exhibit pronounced shear-thickening

� �under simple shear 34,35 . Semi-dilute micellar solu-
tions that exhibit model viscoelastic behavior in the
linear regime often exhibit stress plateaus and shear

� �banding at higher shear rates 36 . Neither pheno-
Žmenon can be predicted a priori, and both and the

.possible link between the two are active areas of
research.

The increase in steady-state viscosity with applied
rate, or shear thickening, is primarily observed in
dilute cationic surfactants with penetrating counter-
ions at low levels of added electrolyte. Studies on

shear thickening of the cetyltrimethylammonium tosyl-
� �ate system 37 have continued by probing transient

� �rheology and small-angle neutron scattering 38,39 .
The mechanism proposed for shear thickening is that
this system undergoes shear-induced micellar growth
and a transition from rod-like micelles to aligned
worm-like micelles. By interpreting the peak in the
scattered intensity as a correlation distance, the au-
thors show that shear moves the position of the
scattering peak to lower values of the scattering vec-
tor, q, and towards the q��1�2 relation expected for

� �entangled worm-like objects 39 . An independent in
situ measure of length would be necessary to verify
this conclusion. Similar rheological and scattering re-
sults have been observed recently in Gemini surfac-

� � �tants 40 . Both of these groups have demonstrated
the sensitivity to temperature and sample history
� � �38,40 . Dilute solutions of mixtures of cationic and
anionic surfactants show shear thickening at distinct
ratios of the oppositely charged surfactants, providing
an alternate mechanism to characterize the influence

� �� �of micellar-surface charge density 19 . Uncharged
micelles of the phospholipid lecithin suspended in
n-decane and swollen with water show shear thicken-
ing, but the transient response is significantly differ-
ent, so it is unclear if this is a shear-induced transition

� �or a restructuring of the gel 41 .
The addition of non-ionic polymer allows for con-

� �trol of the critical shear rates and the viscosity 42 .
Subtle changes in the structure of the polymer allow
the shear thickening to be enhanced or eradicated
completely. Characterization of the specific
polymer�surfactant interactions will allow under-
standing of the transition.

Two recent papers have suggested counterion-
mediated attraction as the cause of the shear-induced

� � �� �structures 40 ,43 . A model has been developed
that predicts the critical shear rates and temperature

� �� �dependence observed experimentally 43 . While
this approach arises from existing work in like-charged
rod-like colloids and polyelectrolytes, testing theories
with worm- and rod-like micelles is complicated by
the dependence of length and persistence length on
temperature, salt and concentration. However, a care-
fully constructed study could provide structural and
rheological data necessary to test the prediction of
shear-induced bundling.

The shear-induced alignment of CTAB�NaSal so-
lutions is used to template the gelation of silica to

� �create highly aligned nanostructures 6 . The resulting
structures formed are clearly more aligned in systems
that exhibit shear thickening. Some cationic surfac-
tants are shown to be good drag reduction agents, but
the mechanism is not understood. A recent series of
papers attempts to correlate solution viscoelasticity,
elongational flow behavior and structure with drag
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reduction. The influence of counterion in cationic
� �systems 7,44,45 , ratio of surfactant in mixtures of

� �cationic amphiphiles of varying alkyl chain length 46 ,
� �added salt in cationic systems 47 and ratio of cationic

� �to zwitterionic surfactants 48 are probed. The pre-
requisite for drag reduction appears to be the pres-
ence of thread- or worm-like micelles. Cryo-TEM, the
primary microstructural probe in these studies, might
indicate the requirement of a shear-sensitive struc-
ture, but the range of pertinent deformation rates is
still in question.

Shear banding is observed in many worm-like mi-
cellar solutions in the semi-dilute region. Several
mechanisms are proposed for shear banding, and tools
are still being developed to properly characterize
structures that develop in a non-homogeneous flow
field. Again, the behavior is dependent on the equilib-
rium structure of the micelles. For CTAB in D O at2
concentrations near an isotropic-to-nematic transition
concentration, a shear-induced transition to a viscous
nematic band and lower-viscosity isotropic band is

� � �verified using NMR 49 . Results agree with neutron
scattering measurements of total alignment and a
simple model, but the existence of a highly viscous
nematic phase still needs to be explained. For systems
at concentrations far from phase boundaries, the
phenomenon is being investigated as a constitutive
anomaly � the existence of multivalued points in the
stress�strain relationship. A model based on a co-

Ždeformational Maxwell model similar to a transient
.network model quantitatively captures the steady

state and transient rheology observed in concentrated
� �CTAT solutions 50 . In another system, optical and

mechanical rheological studies on isotropic worm-like
micelle solutions quantify the kinetics of this transfor-

� � �mation 51 . A system of CTAB with the inorganic
salt sodium nitrate shows a stress plateau at higher
shear rates, no hysteresis in the nonlinear rheology
and adherence to the stress�optic relation up to the
point of shear banding. Transient rheology shows a
fast response from the viscoelastic solution and a slow
response thought to be associated with the formation
and growth of the shear bands. However, optical
measurement of the birefringence across the gap
shows that the shear bands are still stabilizing long

� � �after the rheological signals stabilize 51 .
Use of the seemingly model linear viscoelastic be-

havior in studies of complex flows have been hindered
by the aberrant non-linear behavior. However, a re-
cent report of the wake dynamics of a gas bubble
rising through a 10.7 mM equimolar CTAB�KBr so-

� �lution shows instabilities 52 . The sensitivity of this
phenomenon to viscoelasticity might be used to un-
derstand the non-linear and elongational properties
of worm-like micelles, a topic only briefly attacked in

� �the literature 53,54 .

5. Conclusions

As systems become better characterized, both the
structural and macroscopic behavior can be quanti-
fied. This has already begun with the reverse lecithin

Ž .micelles organogels that are being probed rheologi-
� �cally, even with an applied electric field 30,41,55 .

These systems are neutral, so we do not expect the
same breadth of behavior observed in the low-salt
cationic or other charged systems, particularly the
formation of shear-induced structures. Candidates for
modeling polyelectrolyte behavior are the mixed

� �� �cationic�anionic systems 19 , the non-ionics
� � �‘doped’ with ionic co-surfactants 8,10 and systems

in which the composition of the surface counterions is
� �characterized 20,21 .

Challenges for the future include characterization
of the overall length of worm-like micelles in charged
systems and systems in which the pertinent length
scales overlap. As physical modeling of the rheologi-
cal phenomenon becomes tractable, development of
techniques for in situ characterization of aligned
structures under flow will become essential.
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