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We modify the Hayter-Penfold formalism and gave a quantitative analysis to fit the
viscosity of rod-like micelles solutions under shear using measured small-angle neutron

scattering (SANS) intensity. The original formalism is applicable to a dilute solution, but
we found that the theory can fit our measured results excellently if we use the effective
viscosity of the solution in place of the solvent viscosity of the original formalism. The
fittings yielded good values just the same as our experiment results.

1. Introduction

The structures and the phase transitions in self-assembling systems have attracted

intensified interest over the course of the past decade. In certain surfactant-water

systems micelles, which are initially spherical at low surfactant concentrations just

above the critical micellar concentration, transform and undergo uniaxial growth as

the concentration is increased to become cylindrical aggregates (worm-like) with a

length that can be extremely long compared to their lateral dimensions.1 In particu-

lar, surfactant molecules in aqueous solution display a rich variety of phenomena as

they self-assemble to form micelles, of particular interest are the tubular-cylindrical

micelles, their diameter is nearly constant but the length may vary, they break and

reform continuously; hence they are sometimes called “living polymers”;2 solutions

of these micelles are thus stable when subjected to high mechanical shears and

their equilibrium properties recover when shear is removed. In recent years sev-

eral authors3 found that for dilute solutions of these micelles under shear, viscosity

would suddenly increase as the shear rate reaches a critical value. It is also found

that such a transition depends sensitively on the sample conditions, such as the

temperature, concentration, and salt concentration. Independent measurements,

therefore, of the microstructure and the viscosity can not be easily correlated, and

the nature of the transition was not fully understood. In addition, because of their
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‘living’ nature, the structure and dynamics can change dramatically with concen-

tration, or by the influence of a shear flow.4

Only recently, such studies have been performed on colloidal systems using mi-

croscopic techniques such as light7 or neutron scattering.5,6,8 The authors of Hayter

and Penfold6 have used viscous shear flow to align anisotropic micelles in normally

isotropic phases and have studied the aligned micelles by small angle neutron scat-

tering method. They presented results on dilute solutions of cylindrical micelles and

develop a quantitative theoretical description of the scattering as a function of shear

rate. Within their formalism, the orientational averaging is eliminated, which allows

considerable simplification of the data interpretation, and the interactions between

rods, such as collisions and other effects, are not taken into account either. We

had studied the structure of cylindrical aqueous micellar solutions by small angle

neutron scattering and light scattering both in equilibrium and under shear,5 and

found that for the 0.1%, which is just below the overlap concentration (the volume

fraction of solutions) of the solutions, there is a threshold shear rate γ = 40s−1,

applied shear rate has little effect until the threshold shear rate is reached and

then only after a time delay. We modified the viscosity as a function of shear while

monitoring the microstructure with SANS, found that the system slightly below

the overlap concentration goes through a phase transition at a certain critical shear

rate at which point both the viscosity and the structure undergo a dramatic change.

In order to explain the experimental results, we used the modified Hayter-Penfold

expression, which differs from the original expression by a factor α, the factor α

modifies the solvent viscosity η into an “effective viscosity” αη to include the effects

of interactions. And with the exponential length distribution, the model represents

the data well at all shears. The fittings yielded good values just the same as our

experiment results,and we can also describe the sub-macro characters indirectly

from the experimental data using fitting method.

2. Calculation and conclusions

The scattering from solutions of anisotropic micelles is not generally calculable,

even if the micelles are assumed to be monodisperse, but for dilute isotropic and

non-interacting micelles solutions, the intensity S(Q) is9

S(Q) =< S(Q)l,a >= A

∫ 2π

0

dφ

∫ π

0

∫ ∞
l0

p(θ, φ;P )F 2(Q, β)N(l) sin θdθdl (1)

The factor A is a product of an instrumental constant, the concentration of sur-

factants, the micellar aggregation number, and the square of the scattering length

density contrast between the micelle and the solvent. For the length, the authors

Lin et al. used the well known exponential form for living micelles given by

N(l) =

{
0, l < l0

N0 exp(−l/L), l ≥ l0
(2)
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The form factor for a rod of radius a and half length l, and oriented in a direction

which is an angle β from the vector Q is

F (Q, β) =
sin(Ql cosβ)

Ql cosβ

J1(Qa sinβ)

Qa sinβ
(3)

where J1 is the first Bessel function of the first kind. The brackets denote an average

over both l and a. The ϕ is the angle between the wave vector Q and the horizontal

axis of the area detector, and the relationship between β and the polar coordinates

and ϕ is

cosβ±) = sin θ cosφ cosϕ± cos θ sinϕ (4)

The two signs represent the beam traverses the sample twice in the shear cell,

with the flow direction reversed in the two regions. And also we have

F 2(Q, β) = F 2(Q, β+) + F 2(Q, β−) (5)

The term p(β) is the rod orientation probability, which in the equilibrium case,

is independent of β, Hayter and Penfold 6 define the probability p(β) = p(θ, φ;P )

in terms of the Pėclet number, P = γ/Dγ as

p(θ, φ;P ) =
(1− cos 2φ0)(1 + sin2 θ cos 2φ0)

3/2

4π[1− sin2 θ cos 2φ0 cos 2(φ− φ0)]2
(6)

where the Pėclet number P is the ratio of two competing rates between γ, which

is the rate of the alignment rod in flow direction, and a randomizing rate assumed

to be the rotational diffusion coefficient Dγ . In order to taken into account the

interactions between rods, such as collisions and other effects, and provide a good

representation of the experimental data, We defined the Dγ to be

Dr =
ekBT

8παηl3
{ln(2l/a)− 1.57 + 7[0.28− 1/ ln(2l/a)]2} (7)

which differs from the original Hayter Penfold expression by a factor α. This factor

modifies the solvent viscosity η to an “effective viscosity” αη to include the ef-

fects of size and orientational distribution of the micelles under shear. The original

formalism is applicable to a dilute solution and thus cannot account for a phase

transition, but using the effective viscosity in place of the solvent viscosity in the

original formalism can fit their results excellently.

In these formalism, there are five system parameters such as the experimental

constant coefficient A, the introduced factor α within the “effective viscosity”, and

the geometric parameters of the micelles as the average half-length L, the low-l

cutoff l0, and the radius a. All these parameters are important for the micelles

solution system, and can not be measured directly during the experiments. So

we then gave a quantitative analysis on them using a least squares method. The

single scale factor A is determined by matching the experimental and theoretical

intensities and is fixed for all other calculated curves. Fig. 1 compared the variation
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Fig. 1. Comparing micellar solutions viscosity between the measured and the fitted results, a
phase transition occurs at a threshold shear rate around 150s−1 where the viscosity increase
dramatically.

of the effective viscosity between experimental and our fitting results, as a function

of shear rate, just below the overlap concentration.

The fittings have yielded some good values, they agree well with the measured

values, in that such a model can describe of such systems fairly well.
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