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Abstract

Recent experimental studies on the rheology of block copolymer micelles are reviewed. Where appropriate, we draw
analogies between the viscoelastic properties of polymeric micelles and those of colloidal dispersions. We also present some
important differences between these two classes of complex fluids, namely the ability to tune self-assembly through
solvent—polymer interactions. Finally, new experimental results for attractive micellar solutions of polyelectrolytes are

presented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Self-assembling block copolymers exhibit a wide
range of morphologies and rheological behavior. Their
unique properties have been exploited in a wide range
of applications, including paints, coatings, adhesives,
cosmetics, eye care products, fracturing fluids, and
drug delivery agents [1-7]. An extensive literature,
both theoretical and experimental, exists on the inter-
esting rheology exhibited by block copolymers in se-
lective solvents. Recent reviews have been published
on the morphology [8,9°] and shear-induced micro-
structure [10,11] of block copolymer solutions and on
the relationship between structure and viscoelasticity
[12°]. Excellent reviews on several aspects of block
copolymer solution behavior can also be found in the
text edited by Alexandridis and Lindman [13°®].
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In this paper, we discuss recent work on the rhe-
ology of block copolymers in selective solvents, draw-
ing analogies between colloidal systems and polymeric
micelles where appropriate. We refer to a solvent as
‘selective’ for one block if it is a good solvent for that
block, leading to a self-assembled structure with this
block exposed to the solvent. Our review will concen-
trate on diblock copolymers in dilute and semidilute
solutions, although some relevant results from stars,
triblock, and telechelic systems are also described.
Finally, we limit our discussion to polymers in small-
molecule solvents such as water or decane; this is in
contrast to the series of papers on diblocks dissolved
in short homopolymers that has been recently re-
viewed by Watanabe [14]. Abbreviations used
throughout the text are listed in Table 1.

2. Close-packed micelles: the formation of cubic gels

Diblocks and triblocks containing water-soluble
PEO blocks are among the most widely studied in the
literature. The first systems to be investigated syste-
matically were PEO-PPO-PEO and PEO-PPO
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Table 1
Abbreviations for polymers used in the text

PS Polystyrene

P4VP Poly(4-vinylpyridine)
PI Polyisoprene

PB Polybutadiene

PtBS Poly(tert-butylstyrene)
PNaMA Poly(sodium methacrylate)
PNaA Poly(sodium acrylate)
PAA Poly(acrylic acid)
PEtA Poly(ethyl acrylate)
PEO Poly(ethylene oxide)
PPO Poly(propylene oxide)
PBO Poly(butylene oxide)

copolymers. More recently, PEO-PBO-PEO and
PEO-PBO systems have also been investigated. The
solution morphology of these copolymers has been
well-characterized using small-angle X-ray and neu-
tron scattering (SAXS and SANS). As concentration
is increased, so-called ‘symmetric’ diblocks (with a
roughly equal number of hydrophobic and hydrophilic
groups) show a progression of isotropic micellar—cubic
micellar—hexagonal—lamellar structure, which is anal-
ogous to the phase behavior seen in surfactant solu-
tions [12°,15,16°]. Hexagonal-to-gyroid transitions
have also been observed in ternary water/oil /co-
polymer systems [17®]. As the copolymer asymmetry
increases, the tendency to form lamellar and hexago-
nal phases decreases due to packing constraints. Mor-
phological transitions can also be triggered by varying
temperature. Polyalkylene oxides exhibit decreased
solubility in water as temperature is increased; this
anomalous behavior leads to a critical gelation tem-
perature for the block copolymers.

The morphology of the cubic phase depends strongly
on the nature of intermicellar repulsions. Hamley et
al. [18°°,19] and Pople et al. [20] showed that sharp,
short-range interactions, typical of hard spheres, favor
a face-centered cubic (FCC) structure, while softer
repulsive interactions favor a body-centered cubic
(BCO) structure. Schematics of the hard-sphere and
soft-sphere potentials are shown in Fig. 1. The FCC
structure is favored at high temperatures, due to
contraction of the PEO corona [21]. The FCC-to-BCC
transition can also be observed as the block length of
the corona is decreased [18°®], which agrees with the
classic series of experiments performed by McConnell
et al. [22,23] on PS—PI diblocks in decane. Ordered
cubic crystals have also been observed in micelles
with long-range electrostatic repulsions; for example,
PtBS-PNaMA diblocks in water exhibit strong in-
termicellar repulsions due to the polyelectrolyte na-
ture of the water-soluble block [24°].

The rich phase behavior of PEO-containing copoly-
mers corresponds to fascinating rheological proper-
ties; the most notable is formation of a gel from low

viscosity solutions as the temperature is increased
[16°,25-27]. For example, the block lengths and con-
centration can be adjusted to obtain a system that
exhibits a liquid-to-gel transition at a temperature of
roughly 35°C [16°,25], which can be useful for drug
delivery applications [28]. Rheological ‘phase boun-
daries’ have been measured for several copolymers
that show transitions between sols, ‘soft gels,” and
‘hard gels’ [26,27,29%,30,31%,32*®]. Data for copoly-
mers of differing molecular weights can be scaled
using the critical micelle concentration and tempera-
ture; in general, increasing the PEO block length
shifts the phase boundaries to lower concentrations
[29°,32**]. The sol-hard gel transition corresponds to
the formation of a close-packed micellar gel, de-
scribed above. The soft gels, on the other hand, show
a fractal structure consistent with the idea of a per-
colated network of micelles [27]. The soft gel transi-
tion has also been ascribed to a spherical-to-cylin-
drical micelle transition [26,33] or the occurrence of
defects in the cubic phase [20,30].

From a rheological point of view, the only drawback
of many of these studies is that they report only
sol—gel boundaries as determined by tube inversion,
and not values for rheological parameters over the
range of measurable frequencies and shear rates. The
latter measurements would be beneficial if a pre-
scribed viscosity or elastic modulus is required for a
particular application. Values of the high frequency
modulus vs. concentration would also be useful for
comparison with available theories and experimental
data for polymerically stabilized colloids [34-36]. We
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Fig. 1. Interparticle potential for adhesive hard spheres, and possi-
ble corresponding lengths in ‘sticky’ polymeric micelles. For com-
parison, the potential for hard spheres (heavy dashed line) and soft
spheres (dotted line) is also shown.
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note that some comparisons between tube-inversion
studies and detailed rheometric measurements have
been performed; for example, Li et al. [27] demon-
strated that the sol-gel boundaries for a PEO-PBO
copolymer determined by tube inversion corre-
sponded to the crossover point between G' and G”
measured at a frequency of 1.0 Hz. Kelarakis et al.
[32°°] also recently quantified earlier measurements
by defining a ‘hard gel’ as a solution with a yield stress
exceeding 40 Pa. These solutions do not flow upon
tube inversion and have an elastic modulus, G’, that
is higher than their loss modulus, G”. Systems with
G’ > G" and a small but measurable yield stress are
defined as ‘soft gels’, and solutions with G” > G’ that
flow are defined as sols [32°°].

One interesting extension of this idea is to create
block copolymer aggregates with anisotropic mor-
phologies, such as hard cylinders and hard platelets
rather than hard spheres, and study the resulting
structure and rheology. Bendejacq and Ponsinet
[37,38] have recently shown that it is possible to
create well-defined cylindrical and platelet-like aggre-
gates from PS-PAA copolymers via a solvent-casting
process. The resulting films can then be swollen to
form solutions of anisotropic polymeric aggregates.
Like the non-equilibrium morphologies discovered by
Eisenberg and co-workers [8], these aggregates are
‘frozen’ due to the glassy nature of the PS block.
Work is ongoing to characterize the viscoelasticity of
these solutions.

3. Temperature-induced transitions

Since self-assembly of polymeric micelles is gov-
erned by polymer—solvent interactions, the ther-
motropic rheological behavior of polymeric micelles
can be much richer than expected for colloidal disper-
sions. Examples include the PEO-containing block
copolymers mentioned above. However, these systems
are by no means the only solutions where tempera-
ture can be used to induce a structural change and
alter the rheological response. The thermotropic be-
havior displayed by alkylene oxide copolymers is atyp-
ical; in fact, most diblock solutions show the opposite
behavior, with an increase in temperature leading to
decreased selectivity of the solvent and an eventual
breakdown of the structure. This behavior is exempli-
fied by the rheology of PS-PI and PS-PI-PS co-
polymers in di-n-butylphthalate (DBP), investigated
by Lodge et al. [39]. Di-n-butylphthalate is selective
for PS, and both the diblocks and triblocks form
ellipsoidal micelles with PI cores at low temperatures.
However, above 10°C, DBP begins to swell the mi-
celle cores, corresponding to an elongation of the
micelles. This increase in the effective size leads to a

dramatic increase in G', roughly two orders of magni-
tude [39]. However, at temperatures above 40°C the
micelles begin to disintegrate due to increasing solu-
bility of PI in DBP, leading to a sharp drop in the
moduli. Finally, at T > 60°C, the observed microstruc-
ture and rheology is similar to that of a disordered,
entangled polymeric solution.

Another important class of systems in which the
rheology is highly temperature-dependent are those
where the less-soluble block is below its glass transi-
tion temperature, T,, and the micellar core is ‘frozen’.
These solutions typically show a rubbery-to-viscous
transition as temperature is increased [40,41°®]. Sato
et al. [41°®] examined PS—PI-PS and PS—PI copoly-
mers in tetradecane, a selective solvent for PI. At
T <T,, the PS blocks form glassy domains, and the
rheological response is solid-like, with an elastic mod-
ulus that is independent of frequency. At higher tem-
peratures, the PS domains become fluid, allowing for
bulk fluid flow, and at high enough temperatures, the
response is that of a viscoelastic fluid, with G’ ~ »?
and G" ~w. At the transition between these two
extremes, a power-law dependence of the moduli is
observed at high frequencies. However, the moduli
deviate from this dependence at low frequencies, sug-
gesting that any self-similarity of the solution struc-
ture at the gel point disappears at large length scales.

4. Transitions between semidilute polymers, soft
colloids, and hard spheres

Rheological measurements on dilute diblock mi-
celles also demonstrate that the intermicellar poten-
tial can be varied to produce hard-sphere or soft-
sphere behavior. Physically, this can be achieved in
some cases by varying the ratio between blocks, which
will in turn affect the aggregation number. Higher
aggregation numbers typically lead to denser brushes
that have a sharper repulsive potential, characteristic
of hard spheres. An example is the concentration
dependence of the low shear viscosity, m,, for spheri-
cal PS-P4VP micelles in toluene, a selective solvent
for PS [42°]. Depending on the total molecular weight
and ratio between blocks, the samples exhibited ei-
ther polymeric (n, ~ ¢*°), soft sphere, or hard sphere
(n,/m,=[1—c/c*17?) behavior. The concentration
at which the viscosity was observed to diverge, c¢*, was
found to increase with increasing particle softness.
Above c¢*, data from hard sphere and soft sphere
systems show the scaling G' ~ N,-487~246 similar to
the theoretical prediction of G’ ~N,>r~* for poly-
merically stabilized colloidal particles [42°]. Similar
results were obtained by Vlassopoulus et al. [43°°],
who studied PS—-PI and 1,4-PB stars in decane, a
selective solvent for PI. Increasing the number of star
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arms sharpens the potential in much the same way
that increasing the aggregation number does. The
viscosity of stars with 32 arms was found to follow the
same scaling as semidilute polymer solutions, while
spherical micelles and higher functionality stars exhib-
ited behavior reminiscent of soft spheres and stars
with 128 arms showed hard-sphere behavior. A mas-
ter curve can be obtained when these data are scaled
using an effective volume fraction, calculated based
on the measured hydrodynamic size [43°®]. Previously
published data [44,45] on colloidal hard spheres was
found to follow the same scaling. Spherical micelles of
PS-PEO copolymers in water also exhibit a diver-
gence in the viscosity at ¢ ~ 10.0 wt.%, which is just
above the overlap concentration [46]. However, in this
case the divergence in the viscosity appears to coin-
cide with the formation of large worm-like micelles
[46].

5. Associating micelles: analogies to ‘sticky’ spheres

The idea of using colloidal scaling laws to describe
the behavior of polymeric micelles has recently been
extended to associative micellar solutions
[47°.48% 49%®]. These include telechelic associative
polymers [48°,49°°], ABA triblocks in microemulsion
solvents [50,51], and end-functionalized diblock co-
polymers [52,53]. Typically, the intermicellar potential
is described in terms of an adhesive hard sphere
model [54], where the strength of attraction U, /kT
is expressed in terms of a ‘stickiness parameter’, 1 /7.
More detailed interaction potentials for micelles of
telechelics have also been calculated [47°,55°].

The parameters for the adhesive hard sphere model
can be determined experimentally using dilute vis-
cometry or dynamic light scattering [48°,56], or by
fitting SANS spectra on concentrated solutions. One
of the most extensive experimental studies was per-
formed by Russel and co-workers [48°,49°®], who
examined the rheology and phase behavior of
telechelic hydrophobically-modified PEO in aqueous
solutions. These solutions exhibit a phase separation
due to intermicellar attractions, as was first predicted
by Semenov et al. [47°]. The phase boundaries
observed for samples with different sticker lengths
were found to be in agreement with the bimodal
curve for adhesive hard spheres [48°]. Moreover, the
estimated value for 1 /7 can be used to scale the high
frequency modulus through the dependence of the
intermicellar attraction on aggregation number [49°®].

A bridge between the behavior of associative
telechelics and adhesive hard spheres can be provided
by micelles with a number of ‘sticky’ groups on the
corona arms. In our group, we have realized this
physically through the use of micellar solutions of
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Fig. 2. Storage modulus vs. frequency for several concentrations of
PS-PNaA in water. Symbols represent the following concentra-
tions: 2.86 wt.% (filled diamonds), 2.65 wt.% (filled squares), 2.33
wt.% (open circles), 2.10 wt.% (filled circles), 1.60 wt.% (crosses),
1.40 wt.% (open diamonds), and 1.22 wt.% (filled diamonds).

block polyelectrolytes with glassy cores. Due to the
fixed hydrophobic core, these micelles can be thought
of a model for ‘sticky’ spheres (Fig. 1). The polymers
are prepared from PS—PEtA diblocks that are sub-
jected to a partial hydrolysis reaction, leading to a
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Fig. 3. Storage and loss modulus for samples with 2.0 wt.%
PS-PNaA with differing concentrations of surfactant: 0.0 wt.%
(filled and open circles), 0.1 wt.% (filled and open squares), 0.2
wt.% (filled and open diamonds), 0.3 wt.% (filled and open trian-
gles), 0.4 wt.% (filled and open inverted triangles), 0.6 wt.% (hatched
and dotted squares), 0.8 wt.% (diagonal squares and dotted circles),
and 1.0 wt.% (x’s and crosses). Note the transition from an elastic
gel, with G’ nearly flat with frequency, to a viscoelastic liquid, with
G' ~ w?, as surfactant is added. The moduli have been multiplied
by the following scale factors to allow for easier comparison: 0.0
wt.%, 20000; 0.1 wt.%, 1000; 0.2 wt.%, 50; 0.3 wt.%, 10; 0.4 wt.%,
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diblock polymer consisting of PS-PAA with unhydro-
lyzed ethyl acrylate ‘stickers’ along the PAA chain.
The extent of hydrolysis, and hence the number of
ethyl acrylate groups, is directly related to the amount
of base added in the hydrolysis reaction. In aqueous
solutions, these systems form clear gels at a polymer
concentration of 1-2 wt.% [53]. We have shown that
the hydrophobic ethyl acrylate groups lead to intermi-
cellar associations, with a greater number of stickers
corresponding to a more elastic gel. SANS spectra on
concentrated solutions [52] can be fit to the adhesive
hard sphere model and demonstrate that the sticki-
ness parameter increases monotonically with the
number of ethyl acrylate stickers. Thus, the intermi-
cellar attraction and solution rheology can be tuned
via the hydrolysis reaction.

The gel-to-liquid transition can be triggered by
either decreasing polymer concentration, increasing
the extent of the hydrolysis reaction, or by adding an
anionic surfactant [53]. In the case of added surfac-
tant, SANS has demonstrated that the micellar struc-
ture is preserved and the surfactant only acts to
screen the hydrophobic stickers. Examples of the gel-
to-liquid transition are shown in Figs. 2 and 3. These
systems display critical gelation behavior, with G’ ~
G" ~ "7 031 at ¢ = ¢, and the equilibrium modulus
varying as G, ~ (c¢/c, — 1)*8! above the gel point [53].
The dependence of the gel point on the extent of
hydrolysis is summarized in Fig. 4, which shows that
the critical gel concentration decreases with increas-
ing intermicellar attraction. Analogous behavior has
been observed for attractive colloidal particles [57] in
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which the interparticle attraction was modified
through an added dispersant.

We have also shown that these block copolymer
micelles exhibit some of the same non-linear rheology
as attractive colloids. One of the most notable rheo-
logical features is the appearance of strain-hardening.
The elastic modulus, G’, shows an upturn at high
strains, rather than displaying the monotonic decrease
typically seen in polymer solutions. The critical strain
and degree of strain hardening decrease with increas-
ing concentration and U, /kT (Figs. 5 and 6). Similar
behavior has been observed in colloidal gels of adhe-
sive hard spheres [58] and fumed silica [59,60], and a
variety of biopolymers [61-64]. Theories have been
developed that attribute this behavior to the fractal
nature of the colloidal gel [58] or biopolymer network
[61].

It is possible to use the partial hydrolysis technique,
together with the preparation technique developed by
Bendejacq and Ponsinet [37,38], to create attractive
anisotropic aggregates. This provides an exciting new
direction for investigation of the viscoelasticity of
‘sticky’ platelets, and we are currently studying the
rheology and shear-induced microstructure of these
solutions.

6. Conclusions

Diblock copolymer solutions exhibit a range of vis-
coelastic behavior that can be tuned using a variety of
techniques. The versatility of these systems is due in
part to the fact that they provide a bridge between
semidilute polymer solutions and colloidal disper-
sions. The theoretical framework developed for col-
loidal solutions has been useful in describing the
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structure of concentrated micellar gels and the low
shear viscosity of certain dilute diblock systems. The
viscoelasticity and non-linear behavior of attractive
diblock micelles also display some similarities to data
taken on adhesive hard sphere systems. A robust
means of measuring and controlling the intermicellar
attraction must be developed in order to fully inter-
pret data from attractive systems. Future directions
include the investigation of attractive anisotropic ag-
gregates formed from block copolymers.
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