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INTRODUCTION 

 

In the Proceedings of the 1960 Symposium on Inelastic Scattering of Neutrons in Solids and Liquids, 

Bertram Brockhouse gives a detailed description of the Chalk River triple-axis spectrometer and discusses 

the principal methods of operation of such instruments.[1] In the same volume, in a paper entitled “Energy 

Distributions of Neutrons Scattered from Graphite, Light and Heavy Water, Ice, Zirconium Hydride, 

Lithium Hydride, Sodium Hydride and Ammonium Chloride by the Beryllium Detector Method” [2], 

Woods, Brockhouse, Sakamoto, and Sinclair describe experiments to measure densities of states in various 

materials using the recently conceived filter-analyzer technique.  

 

EXPERIMENTAL ASPECTS 

 

Data were obtained using a filter analyzer spectrometer similar to the instrument described by Woods et 

al.[2]. A monoenergetic neutron beam is selected from the white reactor beam using a monochromator 

crystal that reflects neutrons to the sample position. The energy analysis of the scattered neutrons is 

however performed differently, using a low-pass polycrystalline filter instead of the crystal analyzer that is 

used in the triple-axis instrument. Neutrons with wavelengths longer than the Bragg cutoff max2d  of the 

filter material (where maxd  is its maximum interplanar spacing) are transmitted with no attenuation due to 

Bragg scattering, but shorter wavelength neutrons are strongly attenuated. Phonon processes within the 

filter can still scatter the long wavelength ( λ  >  max2d )neutrons, and it is therefore advantageous to cool 

the filter. 

 

The filtering characteristics of polycrystalline beryllium and graphite are evident from the plots of their 

cross sections as a function of energy. If the filter material is beryllium the cutoff energy is ~5 meV, i.e. 

scattered neutrons with energies less than 5 meV are transmitted with high probability.  On the other hand 

polycrystalline graphite only transmits neutrons with energies less than ~1.8 meV. The filter that we used in 

our experiment consisted of beryllium and graphite. The entire filter was cooled with liquid nitrogen to ~77 



K.  The filter included beryllium, in addition to the graphite which determines the cutoff energy of the 

filter, because Be is a somewhat more effective filter for neutrons with energies above 5 meV. It also tends 

to contain fewer defects that give rise to undesirable small angle scattering of long wavelength neutrons. 

Furthermore, there is less scattering due to low-energy phonons in Be than graphite. 

 

In filter analyzer spectrometry, the energy transfer associated with the detected neutrons is scanned by 

varying the incident neutron energy 0E . The mean energy transfer E ω= h  is then equal to  

'

0E E−  where 
'E  is the mean energy of the scattered neutrons.  For the beryllium/graphite combination 

filter, 
'E  is ~1.2 meV, and the measured Gaussian-equivalent energy resolution is ~1.1 meV FWHM (full 

width at half maximum height).  

 

The filter analyzer method has a number of advantages over other methods of measuring scattered neutron 

energy distributions at relatively large energy transfers.  The advantages and disadvantages of the method, 

as described in ref.[2], are the following: 

 

1. The efficiency of the analyzing system remains constant and therefore the observed intensity does 

not require a correction for the poorly known sensitivity function of the analyzer and the counter. 

2.  On the other hand the energy variation of the sensitivity of the thin fission counter monitor in the 

incident beam is well known. 

3. Because an energy loss process is used, the high frequency transitions are not attenuated by the 

Boltzmann factor as in energy gain methods. Thus measurements at low temperature are possible. 

4. The use of the beryllium-shielded detector eliminates higher order effects in the analyzing system. 

This also implies that the second and higher order contaminant neutrons in the incident beam are 

not as apt to be important as in a crystal analyzing system. 

5. Since the counter is required to be sensitive to very low energy neutrons only, a low [detector gas] 

pressure ... may be used. The fast neutron background is thus reduced while high efficiency for 

counting slow neutrons is preserved.   

6. The experimental conditions can be made such that the counter presents a large solid angle to the 

specimen and as a result the intensity is high. [The solid angle accepted by the [old] detector in the 

filter analyzer spectrometer at NIST is approximately o o9 9× .] 

7. Insofar as the monitor counter has a 1 v  sensitivity function  [where v represents neutron velocity] 

it eliminates the factor '

0k k  [
'

k  and 0k  are the wave vectors of the incident and scattered 

neutrons, respectively] from the expression for the inelastic differential cross-section [see eq. (1) 

below], thus removing all explicit dependence on the initial and final neutron energies and leaving 

only the Van Hove scattering function, ( , )S Q ω , which depends only on momentum and energy 

transfers ... . 

 



Disadvantages of the method are: 

 

1. The wave vector of the scattered neutrons, 
'

k , is small so that the range of momentum transfers, 

Q , is restricted for a given energy transfer ... .The experiment thus encompasses a rather narrow 

band through Qω −  space.  

2. High energy transfers are inevitably accompanied by high momentum transfers resulting in 

Doppler broadening of the high-energy peaks or, in another language, multiple phonon transfer. 

 

 

THE SCATTERING CROSS SECTION 

 

The double differential cross section per unit solid angle Ω, per unit energy transfer, for one-phonon 

scattering in neutron energy-loss scattering by an elemental coherent scatterer such as carbon, may be 

written as follows [3,4]: 
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where 0v  is the volume of the unit cell, cσ  is the coherent scattering cross section per atom, M  is the 

mass of an atom, ( )n ω  is the Bose factor, τ  is a reciprocal lattice vector, ( )jω q  is the frequency of the 

j th normal mode with wave vector q , ˆ ( )dje q  is the corresponding eigenvector component for atom d , 

dr  is the equilibrium position of atom d , 
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 is its Debye-Waller amplitude factor ( 2

du  

being the mean square displacement of atom d ), and the sum within the squared quantity is a sum over 

atoms in the unit cell. 

 

For a collection of mN  isolated elemental molecules (1) may be simplified, recognizing that mode 

frequencies and eigenvectors no longer depend on q . Additionally, performing the sum over τ , we obtain 

a result that we shall call the “single-molecule approximation”. 
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Where the sum on d  is now a sum over the dn  atoms in a single molecule. If we now neglect interatomic 

correlations we obtain the following “incoherent approximation” to the coherent scattering cross section of 

a set of isolated molecules: 
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This further simplifies to read 
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is the normalized vibrational density of states; mµ and µω  are, respectively, the degeneracy and the 

frequency of the µ th set of degenerate eigenmodes. 

 

At energy transfers such that 
'

k  is much smaller than 0k , 
2Q  is approximately proportional to ω . To the 

extent that the approximation represented by (4) can be justified, taking into account the 1 v  cross section 

of the monitor counter, it follows that the intensity measured with a filter-analyzer spectrometer is 

approximately proportional to [ ] 2W( ) 1 ( )n e gω ω−+ . When kT ω� h , 1nω � , and the Debye-Waller 

factor changes slowly with Q . Then, if the scattering cross section may be reasonably represented by (4), 

the observed intensity is approximately proportional to its vibrational density of states. 

 

The incoherent approximation is most easily justified when Q  is large, and when the spectrometer 

averages data over a wide range of Q . In filter-analyzer measurements the incoherent approximation 

applies best at high-energy transfers because in this case Q  is large and the Q –space volume sampled by 

the instrument is somewhat increased. At modest energy transfers studied [usually] it would not be 

surprising if coherent scattering effects produced noticeable changes in the intensities of peaks, but little 

change in peak positions is expected. 
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