BT-7 Triple-axis Spectrometer

https://www.ncnr.nist.gov/instruments/bt7_new/
Neutron Basics

• $E = \text{energy}$

 $E = \frac{\hbar^2 k^2}{2m_n} \propto \frac{1}{\lambda^2}$

• $k = \text{wavevector (momentum)}$

 $k = \frac{2\pi}{\lambda}$

• $\lambda = \text{wavelength}$

• BT-7 uses “thermal” neutrons

 Temperature $\sim 300\text{K}$

 Energy peak $\sim 30\text{meV}$

 Wavelength $\sim 1.8\text{Å}$

• Most common:

 $E = 14.7\text{ meV}$

 $k = 2.66\text{ Å}^{-1}$

 $\lambda = 2.35\text{ Å}$

• SPINS MACS uses “cold” neutron

• Most common:

 $E = 5\text{ meV}$
Bragg's Law

\[n \lambda = 2d \sin \theta \]

\(n=\)positive integer

https://en.wikipedia.org/wiki/Bragg%27s_law
Real Space vs. Reciprocal Space

Fourier transformation

Space-time \((r,t)\) \hspace{1cm} \rightarrow \hspace{1cm} \text{Energy-momentum} \ (Q, \ hw)

Real space \hspace{1cm} Q\text{-space} \hspace{1cm} \text{Time space} \hspace{1cm} \omega\text{-space}

Elastic scattering – static structures \hspace{2cm} \text{Inelastic scattering} – dynamics

\[2\pi/a \]
Triple-axis Spectrometer

Monochromator: a1/a2
2 out of 3 axes: k_i & k_f

$n \, 2\pi/ \, k_i = 2d_M \sin(\theta_M)$
$m \, 2\pi/ \, k_f = 2d_A \sin(\theta_A)$
$n, m = 1, 2, 3…$

$E_i = \hbar^2 k_i^2 / 2m_n$
Controlled by a_1/a_2

$E_f = \hbar^2 k_f^2 / 2m_n$
Controlled by a_5/a_6

Sample: a_3/a_4
Analyzer: a_5/a_6
Monochromator: a_1/a_2
3rd axis : Sample

Q = k_f - k_i

ℏω = E_i - E_f = 0 (elastic)

Alignment

a4 : angle between ki/kf a3 : rotation of reciprocal space

Bragg peak! No peak... No peak...
When k_i and k_f aren't equal...

$$Q = k_f - k_i$$

$$\hbar \omega = E_i - E_f \neq 0 \text{ (inelastic)}$$

- Phonon
- Spin wave
- and etc
Velocity Selector and Filter

\(n \lambda = 2d \sin \theta \)

\(n = \) positive integer

Pyrolytic Graphite (PG)

\(E_i = 14.7 \text{ meV} \)

http://www.neutron.ethz.ch/research/resources/graphite-filter-transmission.html

https://www.ncnr.nist.gov/instruments/bt7_new/VelocitySelector.html
Sample Environment

- Low temperature (50mK)
- Magnetic field (15T)
- Pressure (1GPa)
- Furnace (1600°C)
- Electric field (5000V)