
asc, an IDL program to calculate self-shielding factors 
 
Introduction 
The program asc ("Annulus Shielding Corrections") calculates so-called "self-
shielding" ("self-absorption") factors for an N-component scattering system 
comprising a central cylinder and N-1 concentric annuli. In the simplest case 
N=1 and the system is a simple cylinder. Two examples of scattering systems 
with N=4 are shown in fig. 1. The program handles situations where the beam 
width is less than the diameter of the scattering system and/or the beam is 
not centered, and it accounts for the transmission properties of an 
(optional) oscillating radial collimator (ORC).  
 
Theory  
A "typical" (actually atypical) setup is shown in fig. 2. The calculation is in 
two dimensions, x and y. Incident neutrons travel in the +x direction, and the 
scattering system is centered at the origin. The incident beam is assumed to 
be uniform, monodirectional and centered at y=∆. Its half-width is W. The 
radius of the central cylinder is R1 and the outer radii of successive annuli 
are R2, R3, etc, such that R1< R2< R3… The macroscopic removal cross section 
for region k, for neutrons of energy E, is k (E)Σ . 
 
The ORC, if present, is characterized by the angular separation between 
adjacent blades, 2α, the blade thickness 2δ, and its inner and outer radii, r1 
and r2 respectively (fig. 3). Its transmission g(r,2θ) is a trapezoidal function 
(J.R.D. Copley and J.C. Cook, Nucl. Instr. Meth. A345, 313 (1994)): 
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Here 2θ is the scattering angle, the scattering point is r, b is the impact 
parameter, i.e. the distance from r to a line from the origin in the direction 
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. If there is no ORC, g=1. 
 
For a given measurement M the self-shielding factor for region K, 

, is defined as follows: M
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where Ei and Ef are neutron energies before and after scattering, AK is the 
illuminated area of region K in the x-y plane (e.g. the shaded area between 
the horizontal dashed lines in fig. 2), dk

in(r) is the distance through region k 
to the scattering point r (which is by definition within region K), dk

out(r, 2θ) 
is the distance through region k from the scattering point r in the direction 
2θ, and the integral is performed over all points within the illuminated area 
AK. The removal cross sections  and Σ ≡  depend on the 
experimental measurement (M). 
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For measurement M the neutron count rate may be written as follows: 
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with , where Φ is the incident neutron flux (current density),  
∆Ω(2θ) is the solid angle subtended by the detector at scattering angle 2θ 

and h is the illuminated height of the sample; 
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macroscopic double differential scattering cross section for region K. This 
expression ignores multiple scattering, detector efficiency corrections, and 
variations in sample density. 
 
Simplifying the notation, 
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the N cross sections 
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Examples 
Consider the setup shown in fig. 1(a). The measured intensity may be written 
as 
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With the sample removed the intensity is 
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and with the sample container also removed we have 
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Solving these three equations for C1, we obtain 
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For the simpler case of a sample in a container we would have 
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and 
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Hence 
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As a second example, consider the setup shown in fig. 1(b). With the sample 
in place the measured intensity is  
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whereas the intensity for the empty can measurement is 
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Since C2 = C4 we have enough measurements and we can solve for C3. We 
obtain 
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Usage under DAVE 
To use the program go to "Tools|General Tools|Self-shielding correction 
application." 
 
(1) Under "Scattering Type", select a region (we shall call it k) using the 
slider bar. Enter its macroscopic removal cross section "sigma", i.e. , and 
its radius. Check "Inelastic" if you want to do a calculation with ; in 
this case you must also enter the outgoing macroscopic removal cross section 
"sigma out", i.e. Σ .The default mode is "Elastic" in which case the "sigma 
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out" box content is ignored and out
kΣ is set equal to in

kΣ . Enter values for all 
regions. Ensure that unused regions have "radius" and/or "sigma" set to zero; 
for now the maximum number of regions is 5. 
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(2) Enter the lowest and highest scattering angles and the step in scattering 
angle. Angles are in degrees; default values are 0.0, 180.0 and 10.0. 
 
(3) Enter the beam half-width W and displacement ∆; defaults are W=5.0 cm 
and ∆=0.0 cm respectively. Note that if the sample is fully illuminated W is 
at least as great as RN, with ∆=0.0. 
 
(4) Under "Oscillating Radial Collimator" check the "ORC" box if you want to 
include an  
oscillating radial collimator in the calculation, in which case the four listed 
quantities must be entered; the default values apply to the DCS oscillating 
radial collimator. The default mode is "No ORC". 
 
(5) Under "Calculation Type" enter the number of integration steps (default 
number is 30) or the number of Monte Carlo steps (default number is 700), 
depending on the type of calculation. Note that the time for an analytic 
calculation is roughly proportional to the square of the number of integration 
steps whereas for a Monte Carlo calculation it is directly proportional to the 
number of Monte Carlo steps. 
 
(6) Press the appropriate button to start the calculation. The self-shielding 
factor for the specified region is plotted. Factors for other regions 
may be displayed using the slider bar. The transmission of the sample, 
averaged over the width of the beam, T

M
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average, and the transmission of the 
sample through a diameter, Tdiameter, are also displayed. These quantities are 
given by 
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respectively, where  is the path length through region k for neutrons 
with transverse coordinate y. 
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The menu bar allows you to save the results of a calculation, to show the 
sample geometry, to specify that you want to perform the calculation for all 
HFBS or DCS (!) detector angles, to print a plot of the current factors to a 
postscript file, and to quit. 
 
Precision and accuracy of results 
The precision of both types of calculation, analytic (A) and Monte Carlo 
(MC), improves with the number of steps. The accuracy of an analytic 
calculation also improves but in general that of an MC calculation does not 
change. Consider A and MC calculations that use the same input. If the 
calculations have very many steps they should give the same result but that 
result may have a systematic error because the problem has been 
inadequately modeled. In general there is an additional systematic error in 
an A calculation and this error decreases as the number of steps is 
increased. There is no such additional systematic error in a MC calculation. 
An estimate of the precision of a MC calculation performed in asc is given by 
the error bars. Note that the results for all scattering angles are 
correlated so the smoothness of the plotted points is not a measure of the 
goodness of the calculation. On the other hand a comparison of independent 
calculations (which necessarily use different random number seeds) is a 
useful measure of the MC precision. Another measure of the MC precision is 
obtained by comparing the exact areas AK with MC estimates, which may be 
written as 
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where n is the number of MC steps and iξ  are random numbers uniformly 
distributed between 0 and 1.  
 
In MC mode a line is printed by asc for each region K. The line contains RK, 
AK, and its estimated error. MC

KA
  
Questions? 
Contact Rob Dimeo or John Copley if you have questions, concerns or 
complaints. 
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