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How About Those Neutrons?

e Compared to other spectroscopic probes, neutrons have:
— Very deep penetration depths
— No systematic change in scattering cross sections
e |sotope dependent
— (Weak) Interactions with all materials
— Wavelengths on order of molecular bonds
e Disadvantages can be cleverly overcome
— Low flux, occasional strong adsorption



How neutron travels?
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Instrument Resolution
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Backscattering eliminates AB/tan0
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— Wavelength spread is then dependent
on d (spacing of Bragg planes in

crystal) AE AA

Si {111} crystal planes select for E A
wavelength of 6.27A

— 1 pev resolution obtained by matching
the energy to the silicon d-spacing

As 6 — 90°
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— Doppler motion creates spread in
energy



Quasi-elastic and Inelastic Neutron
Scattering

e Elastic Neutron Scattering

— The energy of neutron does not
change after the scattering

Elastic e (Quasi-elastic neutron scattering
cak .
P — Energy transfer induced by
Quasielastic diffusive or diffusive-like
processes

* Inelastic neutron scattering
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Polymer Dynamics as a function of temperature

(ilih\_\
wc
'r H2 C
LogExs [ C | H
(Pa) R, Rubbery Platean O-CH3
s F - Glass Rubbery Flow
Transition
s i poly(vinyl methyl ether)
Liguid Flow
‘ TI:
3 t T
SOLID GLASS ¢ RUBBER MELT
T \/O
Vibratoos, ! Chain aspects Center of moss \
Short range rotations Rouse . Reptabon ditfusion

secondary relaxatons

vinyl methyl ether



Fixed Window Scan
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Dynamic Scan
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Analysis

 Dynamics of the polymer in quasi-elastic

scattering
Stheo(Q.00) = DWF {f(Q)'é(m{fr [1- Q) ]Sqe(Q.0)} + S:{D_-m)
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e a-relaxation :
Stheo(Q.®)=DWEFXSqe(Q.®)+Sne( Q. )



Analysis

e Continuous diffusion (Simple exponential):
S(O.1) = A(Q.t)exp(-DQO’1)
Translational Diffusion coefficient

 Non simple diffusion (Stretched exponential):
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\ Characteristic relaxation time

S(O,t) = A(O,t)exp

e Pre-factor A4(Q.7):
In crystals: In polymers:
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Diffusion at Different Length Scales

\ Single relaxation time

(simple exponential)

Distribution of relaxation times

| / (Stretched exponential)
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At low temperature or small Q
(large length scale): Simple
exponential -> normal
diffusive process. = 1.
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At smaller Q (larger length
scale), B -> 1 (average over all
configurations).
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At large Q (small length scale),

B < 1 (many relaxations from
inhomogeneous environment)




Arrhenius vs. VFT Temp. Dependence

2 | | I I I . I I J | ’ |
R :
" v VET Fit Parameters:
= L
l:; 1 =107 (s)
N B=1290
| [\ =705
2 0 T =205K
"
=% B i B
4 i T4(T) = 194 €X [ ]
e ‘ a 0,a €XP 1
Y ‘-..,m T—T,
(@) £ = N
e, B,
-8 e "
| e
Dielectric Data TR t_a
-104 Neutron Scattering Q=1A']
| ! | ! I ! I ' I ' | I ¥ | ! | !
240 260 280 300 320 340 360 380 400

T (K)




o-Relaxation in PVME

Using BS & dielectric spectroscopy to find the alpha
relaxation in PVME, but can’t see beta...
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Fig4: A complete relaxarion map for one of the famous polviners, polvisoprene by
different experimental techniques [§]. a-relaxation at low temperatures is covered by

dieleciric spectroscopy. Open symbols belong to neutron scattering measurements.



Conclusions

HFBS is useful for obtaining relaxation times and self diffusion
coefficients

— Only time scales of 100ps — 10ns

Polymers can be readily characterized by HFBS

— Large length/time scales are limited

— Observe methyl rotation and a-rotation
At each temperature, increasing Q results in decreasing 3
At each Q value, increasing temperature -> decreased 3



