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X-ray transmission image.
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Figure 44-10. Geometrical relations among object distance 5 image
distance s’, and focal length f.

(-Fram Weidner &QSEH;. E'&‘ﬂ&'h'i'ﬂ*‘}’ C!nﬁnc.al Pﬁ}‘SLﬁ‘-)

1/f = 1[s + 1/s’

his = h'[s

The ratio of image-object distances, s’[s, is equal to the ratio of in
object sizes, h'[h. This ratio A’[h is known as the lateral magnification.



Angularly divergent white light source.




Angularly collimated white beam.




Collimated white beam specularly reflected.




Monochromatic, collimated beam specularly reflected.




Polarized neutron reflectometer/diffractometer at the NIST Center for Neutron Research.
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Flea head, 170 x magnification, scanning electron microscope, \ :
(University of Queensland, Australia, Center for Microscopy and Microanalysis).


http://www.uq.edu.au/
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© CMM 2001

Blood cells, 2000 x magnification, scanning electron microscope,


http://www.uq.edu.au/
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Single slit monochromatic light diffraction — Maleki/Newman at www1.union.edu.




Double slit monochromatic light diffraction — Maleki/Newman at www1.union.edu.




Water wave diffracting through a double aperture (from left to right) — B.Crowell,
Light and Matter, .


http://www.vias.org/physics
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Young's Double Slit Experiment

Light Coherent
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Figure 6 Intensity Distribution of Fringes

M.W.Davidson and M.Abramowitz, micro.magnet.fsu.edu.



Figure 41-15. Representations of the electric and magnetic fields of a
sinusoidal electromagnetic wave: (a) the field lines; (b) the sinusoidally

varying amplitudes.  (affer Weidmer KSells, Ejementary Classical Physics)
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Figure 2.5-6 Interference of two spherical waves of equal intensities ungmatmg at the
points P, and P,. The two waves can be obtained by permitting a plane wave to impinge
on two pinholes in a screen. The light intensity at an observation plane a distance d away

takes the form of a sinusoidal pattern with period = A /6.

DIFEFRACTiZ FPATTERN (WHICH RESULT <« FRom THE COHERENT
SUPERPoZITION OF Two WAVES ( AMPLITUDES OF THE Two
WAVES APD TOHLETHER AT ANYGIVEN PoINT IN SPACE)

A CHARACTERISTIC  RECIPROCAL RELATIONSHIP EXISTS
BETWEEN THE PosimioNG 0F THE INTENSTY MAXIMA
IN THL DIEFRACTION PATTERN AND THE DPISTANCE
SEPARATING. THE OBJTECTS CAUSING THE SCATTERING |



Wave interference patterns produced by monochromatic laser light diffract)ingl_thro,ugh

a triple slit aperture for various intensitiés — L.Page ( his isa

dramatic illustration of wave-particle duality.



http://www.vias.org/physics
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PHOTON SELF-IDENTITY PROBLEMS

(abyss.uoregon.edu)
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PROBES OF THE MICROSTRUCTURE OF SURFACES AND INTERFACES

photons, electrons, neutrons, atom and ion beams, miniature
mechanical devices
* DIRECT IMAGING (REARL SPACE)

e.g.:

= optical microscopy (- 1000 x magnification)

- scanning electron microscopy (SEM) (orders of magnitude
higher magnification than possible with light)

- transmission electron microscopy (TEM)

atomic force microscopy (AFM)

* DIFFRACTION (RECIPROCAL SPACE)
2.g.:
- low energy electron diffraction (LEED)
- spin polarized LEED (SPLEED)
- reflection high energy electron diffraction (RHMEED)

= ellipsometry (optical polarimetry)

- x-ray reflectometry

§ - neutron reflectometry

L\-‘HM

For quantitative measurements of depth profiles along a
normal to the surface, x-ray and neutron reflectometry

are particularly useful because of their relatively weak
interactions with condensed matter and the fact that these
interactions can be described accurately by a comparatively
simple theory. In the case of electron diffraction, on the
other hand, the potential is non-local and the scattering is
non-spherical, relatively strong and highly energy-dependent.
For atom diffraction, the description of the interaction
potential can be even more complicated.




Hexagonal aperture monochromatic light diffraction — Maleki/Newman at www 1.
union.edu.




FCC aluminum crystal structure - Electon diffraction pattern for aluminum -
colorado.edu. canemco.com.









Electron diffraction pattern for a single alum crystal — H.J.Milledge, Department of
Geology, University College, London.



Model of DNA structure — academy.d20.co.edu.



X-ray diffraction pattern for DNA obtained by Rosalind Franklin.




Light-harvesting protein from the bacterium Rhodopseudomonas Acidophilla as determined
by x-ray diffraction — CCLRC Synchrotron Radiation Source, Daresbury Laboratory, UK.



X-ray diffraction pattern from a protein found in peas — CCLRC Synchrotron Radiation
Source, Daresbury Laboratory, UK.



Diblock copolymer lamellar nanostructures —
R.Jones, B.Berry, and K.Yager (NIST Polymer
Division) and S.Satija, J.Dura, B.Maranville et al.
(NCNR).

Fig 1. Side-view scanning-electron micrograph of laser-interferometry-produced silicon substrate
with 400 nm channels, spaced by 400 nm for a total repeat distance of 800 nm.
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Fig 2. Diagram of expected orientation of lamellae, based on position with respect to the channels.
Silicon substrate with etched channels is displayed in gray, with lighter and darker regions
corresponding to the two polymer components of the lamellae.
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Figure 37 Triangular lattice of flux lines through top surface of a superconducting cylinder. The
points of exit of the flux lines are decorated with fine ferromagnetic particles. The electron micro-
scope image is at a magnification of 8300..(Courtesy of U. Essmann and H. Triuble.)
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SANS diffraction pattern of vortex lattice in superconducting Nb — J.Lynn et al..




Nb 800 G-

Nb 1000 6

Nb 1200 6

Var +f_;{ L-..H"ir..!.. Dbn-n.?:.h. A ”iﬂlﬁ&ﬂ\
T.W. Lyan, kol ‘Pkb:.. Rey, Lett, 78, 3413 (1994)
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Reflectivity = Number of reflected neutrons _ . >
umber of incident neutrons

Specular reflection: p(z) = <p(x,y,2)>xy
Non-Specular reflection: Ap(x,y,z) = p(x,y,z) — p(z)

(pFTER NEDERK ETAL)
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with 8 = kg,n,4;, with ng and n,, corresponding to the substrate and im_:idmt wmdi-.!m,
respectively. The jth mmxhljmnﬂpmdammjms!ahulmmm wherein the scattering
density is assumed to be constant and equal to p;. The amplitude of the incident wave in
assumed to be unity. The transmission and reflectivity are T*T = |T|? and R*R = |R}?,
respectively, and can be obtained directly from Equation (9).

i -u,’ sinf,

Thus, for a given model potential, it is straightforward lo calculate the expectsd

reflectivity. Unfortunately, the converse of this statement is not necessarily true, as will be
discussed in more detail in Section 4.

Al this point it is useful to consider an aliernate derivation of the reflectivity fram which
the Bom approximation {comesponding to the kinematic limit which is discussed below) and
other useful results can be directly obtained. Suppose that there exist two arbitrary but different
density profiles py(x) and py(x) for which the corresponding, separate reflectivilies are to be
calculated, In each case we take the incident wave to propagate from left to right. 'We then
have to solve the following pair of equations (derived from equations & and T):

R R e RO j=12 (12)

for -es < x < oo where $,(x) and y(x) are the exact solutions in each case. From these we
can construct the Wronskian function

Wiz) = Wly(x), dole)]l = dylehiy ' (x) - ¥ (xhalx. (13)
Differentiating both sides of eq. {13) and vsing eg. (12} we obiain
Wix) = = (x)dmp (0,00 (14)
where
px)=p ) = pylx) . {15)

Equation (14) tells us that W{x) is a constant over intervals where the two density profiles
coincide, g,(x) = p4(x), which is a property we will exploil 1o obtain a formula relating the
reflectivities for each profile. First, assume that py # py(x) only within an interval f; < x <€
{3, We allow subintervals of (£, I3} where py(x} = py(x), but we demand finite £, and 4, such
that py(x) = pa(x) for all x < ¢, and for all x > ¢5. We also assume that the wave is incident
in vacuum so for x < &, p;(X) = pa(x)} = 0. The wavefunctions for x < {, are then

Yle) = r“"" . R_I.c_ﬁ"' (16)

where Ry and Ry are the reflection amplitudes for each problem. Similarly, we assume that each
density profile has a common substrate so that for x > [y, py{x) = pa{x) = ples). The
wavefunctions for x > fq are then

¥iix) = T; o™k an
where

303

K= 1!I':;‘,i. - 4z p(=) (18)

and T, and T, are the transmission amplitudes in each problem. Now we see that for the given
pair of profile functions py(x) and p,(x), W(x} is uniquely determined everywhere and varies
with x only in (), £3), where g (x) and g5(x} can differ. Substituting (17} into (13) we obtain
Wix) = 0 (19)
for all x = ¢4, since ¥ (x) and y(x) are proportional to one another (linearly dependent) in this
region, However, substituting (16) into (13} we get
W) = 20k, (R, -Ry) @0)

for all x < £, which is a complex constant. Finally, for £; < x < {; we integrate both sides
of equation (14} to obtain

'T
me"it = W(E)-W(l )=y @
wierz
iz
oy = J#’Lﬂx}‘fﬂuﬁlﬁﬁ}tﬁ : {2
1

Now W(x) is continuous everywhere singe (%) and . "(x) are. Thus, evaluating (19) and (207
atx = fyand x = £, respectively, we find W(¢s) = 0and W(¢,) = 2ik, (R,-Rs). Thus, from
equation (21) we get

«13
RI - RI 4 _El_ {13}

where again Q = 2k, is the wavevestor ransfer. Equation (23) is the general formula we set
oul to derive and 15 a handy starting point for exact treatments as well as approximation
schemes.

For example, consider any p(x) which vanishes identically for x < ) and for x > #,.
Then, in eguation (23) we can set py(x) = p(x), ¥y(x) = ${x), and R, = R whereas for the
“other" density profile we take pa(x) = 0 everywhere so that J(x) = exp(ik ,x) and Ry = 0.
Combining equations (22) and (23) then gives the exgcl solution of the reflectivity for an
arbitrary scattering density profile p(x):

R=2> | e 24
i@ 1
where we have formally extended the integration over all x, though only the region where p(x)
# { contributes. Although it may not be obvious from the derivation, equation (24) also holds
if we allow g(x) to be nonzen as x -= o, as long as the integral exists. Note that (24) requires,
o be exact, the exact wavefunction y(x) wherever a(x) % 0. The corresponding expression for
the reflectivity |R|2, is
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FIGURE 1. Family of scattering length density profiles obtained by model-
independent fitting of the reflectivity data in the inset. The profile represented
by the blue dashed line is unphysical for this T/TIO film system yet generates
a reflectivity curve that fits the data with essentially equivalent gosdness-of-fit
(all the reflectivity curves corresponding to the SLD's shown are plotted in the
inset but are practically indistinguishable from one another).
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FIGURE 2. Reflectivity curves for the thin fim system depicted schematically in
the inset, one for a Si froating (red triangles), the other for ALD, (black circles).
The curve in the lower part of the figure (blue squares) is the real part of the
complex reflection amplitude for the fims obtained from the reflectivity curves
by the method described in the text.
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FIGURE 3. SLD profile (ved line) resulting from a direct inversion of the Re r of
Fig. 2 compared with that predicted by a melecular dysamics simulation (white
line) as discussed in the text. The headgroup for the Self-Assembled-Monolayer
(SAM) at the Au surface in the actual experiment was ethylene oxide and was
not included in the simulation but, rather, modelled separately as part of the
Au. Also, the Cr-Au layer used in the model happened to be 20 A thicker than
that actually measured in the experiment.
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UNIQUE DETERMINATION OF
BIOMIMETIC MEMBRANE PROFILES BY

NEUTRON REFLECTIVITY

ew hiomimetic membrane materials, of fundamental impoe-

tance i siderstaihing such key biological processes as
malecular recognition, conformatienal changes, and molecular self-
gasembly, can be characterized using newtron reflectomenry. In par-
ticular, scattering bength density (SLD) depth profiles along the
normal o the surface of a model biological balayer, which mimics
the structure and function of 3 genwne cell membranc, can be
deduced from speculas neutron reflectivity data collected as a func-
tion of wavevecior transler €. Specafically, s depih perofile can be
obixined by numerically fuang a computed to a measured reflectiv-
ity, The profile generating the best fitting reflectivity curve can
then be compared io cross-sectional slices of the flm's chemical
composation predicied, for exampie, by molecular dynamics simula-
tions [ 1], However, the unigueness of a profile oblained by comven-
tiomal analysis of the film’s reflectivity alone cannot be established
definitively without additional informsation. In practice, significantly
iferent SLD profiles have been shown o vield calcubaied refleciiv-
ity curves with essentially equivalent goodness-of-fit 10 measured
data 2], & illusirsted in Fig. 1.

FIGURE 1. Famiby of scattesiag longih dessity profilies sbiaised by model-

iting 1 the refiactivity data in the inset. The profils represested
by the Blen dashed lise iy snphysical fer this TUTIO film system yet gonerates
a rafiectivity curen that fits the data with essentially

equivalent gosdneis-of-fit
[l s rafectivity curves coresponding to the SLO's shown are platted in the

inset but are practically isdistinguishable fram one another].
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The existence of maltiple selutions, only ene of which can be
physical, is especially problematic in cases where a key additional
picce of structural or compositional information is lacking as can
happen in the imvestigation of these biological membrane systems.

Why this inherent uncerininty T The newtron specular refbection
amphitude for a model LI can be computed exactly from first
principles: the square of its modulus gives the measurable reflectiv-
ity. 1t is firmly established, however, that the complex amphitude
is necessary and suffichent for a unique solution of the inverse
problem. that of recovering the SLI from reflection measurements,
Unambiguons inversion requires both the magnitude and phase of
reflection. Once these are known, practical meshods 3] exist for
extracting the desired SLD,

In fact, coasiderable efforts were made about a quarter century
agn to sodve the analogous “phase problem” in X-my crystallography
using known comstraints on the scatiering electron density [4] and by
the techmique of isomarphic substitutzen [5). Variations of the latter
approach have been applicd 1o reflectivity, using a known reference
Layer in & composite film in place of atomic substitions, These

FIGURE 2. Meflectivity curves far the Bhin Bim system depicted schematically in
the imsa, one for @ i froting fred irianghes}, tha ather far L0, (black circles].
The curva s the lower part o the Sgure blue squares) is the real part of the
compen rfiection amplitade fur the Firs sbialned rom the reBecilvity curves
by the mathed described b the fext

RESEARCH HIGHLIGHTS
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salathon metheds, however, were tied to the Born sppronimation,
which generally is valid i crystal sructure determination but which
fails catsstrophacally at fow ) (bow glencing angles) i reflection
from slab-shaped samples soch = thin fims. Exsc iveruon
requires accaraie knowledge of the refection amplitude over the
entire (-range, especially ar low

I this decade the reflection phase problem has been exsctly
wolved uung & prodocal of three reflectivily measurements on com-
posite ilms consistimg of the film of inleress in istimate contact with
cach of theee known reference layers [6, 7). Subsequently, variations
using oaly two memurements have been shown 1o panially sobve
the phase problem. an additional procedure being required 10 chonse
beiween iwo sodution branches, only one of which i plysecal [,
9, In the pzst year | 10]. an exact solation has been found for a
1wo measurement srategy in whach the film surroand, euber the
fronting (incideni) ar hacking {iransmitting ) mediars, i varicd. This
new approach is simples 10 apply than reference Layer metbods
ond is adapable 10 many expeaniments, Surrotnd vananon pouLon

100
th

FIGIRE 1. §10 profils jred lins) rosulting from a dimct inversios of the Re raf
Fig. 2 compared with 1hat predicied by » melecular dmamics sinulation (wiils
Sita| on disconed in Eha texl The hesdgriup fer the 406 Azsenbled-Manalayes
(SAM) at the Aa suriace in e sctual experinent was siylene exids dnd was
eoi bscisded in the simuistion but, rathe:, sodalled sspiealaly &5 part of e
Ae. Miss, b Cr-Au laper uned in The model happened i be 28 | thickar thas
1hat pctzally messgred in the expezimemt.
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refleciometry has been successfully apphicd 1o the challenging type
of hiokogical membrane depah profiling described earlier.

In Feg. 2 are ploved a pair of newiron reflectividy curves
measared for the loyered film structure schematically depicied in
the upper right fnset, one with i and the other with ALO, ax the
fronting medium. The lower part of Fig. 2 shows the real part af
the complex reflection amplitude for the maltilayer as extracied from
the reflectiviy data, acconding 10 the nacthod desenbed above, and
which was subsequently wsed 1o perform the imversion 1o obtain
the SLD shewn in Fip 3. For companson, the SLD predicted by
a mobecular dynantics simulation is also shown in Fig. 3. ma
slightly distorted version, cormesponding 10 8 truncated reflectivily
data ser, which indicmes the spatial resolution of an SLD obtmnshle
in pragtice. This laer SLID was obauined by imversion of the neflec-
tion anplitisde compeied for the exact model SLD, but using values
aaly up 1o the same maximum  valse (0.3 A} aver which
the actual reflectvity datn sets were cofleched. Cvemll, agreement
berween the expenimentally determined profile and the theoretical
predaction is remarknble, essentinlly limited ondy by the Qr-rarge of
the measuremend. Sorround vasimion meutron reflectivity thus makes
it possibile to measure complicated thin film structunes without the
aimhiguity associated with curve fitting. The veridscal SLD profile s
obtained directly by a kst prancaples inversion.
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