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Gaussian random field models of aerogels
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A model capable of predicting pore characteristics and rendering representative images of porous
materials is described. A long-term goal is to discriminate between open and closed porosities.
Aerogels are modeled by intersecting excursion sets of two independent Gaussian random fields.
The parameters of these fields are obtained by matching small-angle neutron scattering data with the
scattering function for the model. The chord-length probability density functions are then computed
for the model, which contain partial clustering information for the aerogels. Visualizations of this
model are performed and compared to electron microscopy images and gas adsorption pore size
distributions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1563038#
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I. INTRODUCTION

Small-angle neutron scattering~SANS! is a well-
recognized investigative method to characterize mate
microstructure.1 Many research efforts have employed SAN
and small-angle x-ray scattering~SAXS! to characterize
aerogel structures. These techniques have been applie
examine a range of length scales and to study change
structure with respect to processing variables.2–7

In previous work, the base-catalyzed tetraethoxysila
aerogel system was studied using a polydispersed h
sphere model.8,9 However, visualizing realizations of thi
model can be problematic at best. Also, clustering inform
tion about this hard sphere model has yet to be analytic
derived since the spheres of this model are not assumed
in thermal equilibrium.10,11

This study examines the viability of a Gaussian rand
field ~GRF! model for SANS characterization of aeroge
Previously, variants of the GRF model have been emplo
in the literature to study a variety of material systems,
cluding aerogels,12 foamed solids,13 mass and surface
fractals,14 polymer blends,15 sandstone,16 cellular solids,17

tungsten-silver composites,18 heather incidence,19 and sul-
phide ores.20 Here we attempt to match the scattering data
aerogels to the scattering function for the GRF model
minimizing over several parameters. Clustering informat
may then be obtained by computing the chord-length den
functions for the model. Also, realizations of the GRF mod
may be constructed to determine if it in fact bears a morp
logical resemblance to the aerogel.

In Sec. II, we describe the construction of the aerog
currently under investigation. In Sec. III, we list previous
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known results about the GRF model. The GRF model u
here will rely on seven parameters; we discuss in Sec. IV
method by which these parameters are selected. Finally
Sec. V, we show our results for the choices of these par
eters and a three-dimensional realization of the GRF mo
The chord-length density function for the GRF model is a
found and compared with the gas-adsorption derived p
size distribution.

II. EXPERIMENTAL INFORMATION

Aerogels were synthesized from a tetraethoxysila
~TEOS! precursor in ethanol~4:1 ethanol/ TEOS ratio! using
a base catalyst~0.1N NH4OH @pH 5 9.6# in a 4:1 catalyst/
TEOS ratio!, forming a gel in 1 cm diameter vials at 23 °C
The sample was aged in the solvent for 3 days and su
critically dried in liquid CO2. The physical and neutron
transmission characteristics of the supercritically dried ae
gel are noted in Table I. The transmission coefficient h
been calculated as the ratio of sample transmission
empty beam transmission.

Experiments were conducted on the 30-m SANS inst
ment on neutron guide NG-7 at the NIST Center for Neutr
Research. Detector distances of 1.2, 4, and 15.3 m were
to effectively examine a large range of length scales, and
neutrons were employed to resolve extremely small len
scales.

Gas adsorption measurements to determine sample
face area and pore size distribution were conducted o
Quantachrome NOVA 2200 using nitrogen as an absorb
The sample microstructure was imaged using transmis
electron microscopy~JEOL 100cx!. Small pieces of aeroge
were crushed, dispersed ultrasonically in ethanol, and u
mately deposited on holey carbon-coated Cu grids.

Other aerogels modeled using this method are ba
catalyzed tetramethoxysilane samples. These materials
of varied water to alkoxide ratios, solvent to alkoxide ratio
4 © 2003 American Institute of Physics
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andpH. The scattering curves for these samples did not
fer markedly, but they do offer an opportunity to study sim
lar structures.

III. MODEL CHARACTERIZATION

In this section, we define a mathematical model for ae
gels: the intersection of two excursion sets of independ
Gaussian random fields. We also discuss various microst
ture functions, defined for general random media, wh
have been explicitly computed for the GRF model. As
will show in Sec. V, this model captures the essential m
phology of aerogels.

A. Gaussian random fields

We consider isotropic GRFsy so that each valuey(r ) is
a Gaussian random variable with mean 0 and varianc
Such GRFs are completely characterized by the field-fi
covariance function

g~r !5^y~0!y~r !&, ~1!

wherer 5ur u. In this paper, we will use the covariance fun
tion

g~r !5
e2r /j2~r c /j!e2r /r c

12~r c /j!

sin~2pr /d!

2pr /d
. ~2!

This choice of covariance function has three parameter
correlation lengthj, a domain scaled, and a cutoff scaler c .
These parameters allow considerable flexibility in the sh
of g(r ), and so Eq.~2! has been used frequently in previo
modeling work.12,21,22

Many techniques for generating realizations of Gauss
random fields in a cube with sideT have been presented i
the literature; see Ref. 23 and references therein. In this
per, we use a method which may be efficiently evalua
using a fast Fourier transform algorithm:24

y~r !5 (
l 52N

N

(
m52N

N

(
n52N

N

clmn exp~ ik lmn•r !, ~3!

where

k lmn5
2p

T
~ l x̂1mŷ1nẑ!. ~4!

The random variablesclmn are chosen so thaty is real and
isotropic with zero mean. This includes a stipulation that

Var~Reclmn!5Var~ Im clmn!5
1

2
r~k lmn!S 2p

T D 2

, ~5!

where r(k) is the spectral density which depends only
k5uku. It can be shown that a random field defined in th
manner has covariance function given by

TABLE I. Sample size and neutron transmission coefficient for the SA
scattering experiment.

Sample
Sample

thickness
Sample

density~g/cm3)
Transmission coefficient

~sample/empty beam!

TEOS 0.62 cm 0.367 0.76
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g~r !5E
0

`

4pk2r~k!
sinkr

kr
dk. ~6!

For the three-parameter covariance function of Eq.~2!, the
spectral density is given by

r~k!5
d4@q~j!2q~r c!#

p2~j2r c!
, ~7!

where

q~x!5
x4

@d21x2~kd22p!2#@d21x2~kd12p!2#
. ~8!

B. Two-cut model

The two-cut model is made by taking a certain excurs
set of a Gaussian random field. That is, the solid phas
defined to be all values ofr which satisfy

a<y~r !<b ~9!

for some thresholdsa andb, while all other values ofr are
assigned to the pore phase.

Many characterizations of the microstructure of the tw
cut model have been obtained in the literature;12 we summa-
rize them here. First, the volume fractionf of the solid
phase is

f5fb2fa , ~10!

where

fa5
1

A2p
E

2`

a

e2t2/2 dt5
1

2
1

1

2
erf

a

A2
. ~11!

The definition forfb is similar.
Second, the two-point phase probability functionS2(r )

is defined to be the probability that two points separated b
distancer both lie in the solid phase. This is known to b
equal to

S2~r !5f21
1

2p
E

0

g(r ) dt

A12t2 FexpS 2
a2

11t
D

22expS 2
a222abt1b2

2~12t2!
D 1expS 2

b2

11t
D G .

~12!

Third, for a line which passes through a random ma
rial, let nc be the average number of times per unit leng
that the line crosses the interface between the pore and
phases. From stereology,nc is known to be half of the ma-
terial’s specific surface. For the two-cut model,16

nc5
g

p
@e2a2/21e2b2/2#, ~13!

where g5A2g9(0). For theparticular choice ofg in Eq.
~2!, we have
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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g5A4p2

3d2
1

1

r cj
. ~14!

A typographical error in Eq.~48! of Ref. 16 has been cor
rected in Eq.~13!.

Fourth, the surface-void correlation functionSc(r ) gives
the correlation for finding two points separated by a dista
of r so that one point in the solid phase and a second poin
the interface. Rigorous bounds on the fluid permeabilit25

and trapping constant26 of random materials have been foun
which depend on this function. For spherical systems,Sc(r )
is a special case of the canonical distribution function.27,28

For the two-cut model,16

Sc~r !5 f bb~r !1 f ba~r !2 f ab~r !2 f aa~r !, ~15!

where

f ab~r !

5
ge2b2/2

2p S 11erfFg$a2bg~r !%

A2G~r !
G D 2

g8~r !

2pA12g~r !2

3expS 2
a222abg~r !1b2

2@12g~r !2#
D

3erfFa2bg~r !

A2G~r !

g8~r !

A12g~r !2G ~16!

and

G~r !5ug2@12g~r !2#2@g8~r !#2u. ~17!

A typographical error in Eq.~51! of Ref. 16 has been cor
rected.

C. Intersection model

Many variants of the above excursion set model ha
been proposed in the literature. One such variant takes a
solid phase the intersection of two independently construc
two-cut models. Formally, ify1(r ) and y2(r ) are two inde-
pendent Gaussian random fields, the solid phase is define
be all r so that

a<y1~r !<b

and

a<y2~r !<b. ~18!

Open-cell microstructures typical of aerogels can be c
structed using this intersection model, as shown in Sec.

We summarize below known microstructure charact
izations of the intersection model. We use boldface to dis
guish these characterizations with their analogues for
two-cut model:

f5f25~fb2fa!2, ~19!

nc52fnc , ~20!

S2~r !5@S2~r !#2, ~21!

Sc~r !52S2~r !Sċ~r !. ~22!
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D. Chord-length probability density function

An important characterization of random media is t
chord-length probability density function.11,28–30If a line is
drawn through a random material~as schematically illus-
trated in Fig. 1!, the chords are defined to be the segme
entirely in one phase with both end points on the interfa
We definep1(r ) and p2(r ) to be the probability density
functions of the chord lengths in phases 1 and 2, respectiv

The chord-length density function provides connecte
ness information about random materials, albeit in a sin
direction. This function is known to be proportional to th
second derivative of the lineal path function or the probab
ity of finding a line segment of given length complete
within a certain phase. Both functions thus contain more
formation thanS2(r ), which only requires that the end poin
of a line segment lie in a certain phase. Furthermore,
connectedness information can be used to accurately re
struct random materials.31–33

Define

f̂ ~s!5E
0

`

e2srf ~r ! dr ~23!

to be the Laplace transform of a functionf. Roberts and
Torquato found expressions for the Laplace transforms of
chord-length functions for both phases. For the intersec
model,16

p̂1~s!5
nc2s@Ŝc~s!2sŜ2~s!1f#

nc2s@Ŝc~s!1sŜ2~s!2f]
~24!

and

p̂2~s!5
Ŝc~s!1sŜ2~s!2f

Ŝc~s!2sŜ2~s!1f
. ~25!

Strictly speaking, these expressions are valid if the ch
lengths are independent, an assumption that is not valid

FIG. 1. A schematic depiction of the chords in a random medium. Beca
the chords measure length in a single direction, it is possible to get a l
chord length through a narrow passageway.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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any GRF model. However, Roberts and Torquato a
showed numerically that the dependence of the chord len
minimally affectsp̂1 and p̂2 .

To find the original functionsp1(r ) andp2(r ), we will
use a short algorithm discovered by Abate and Whitt.34,35

Based on previous experience,16,30 evaluating the integrals
which determinep̂1(s) andp̂2(s) to 10 or 11 decimal place
will produce values ofp1(r ) andp2(r ) accurate to roughly 3
or 4 decimal places.

It has been shown thatp1(r ) and p2(r ) specify the
small-angle scattering intensity.36 In the next section, we take
up the inverse problem: how to use scattering data to find
excursion set model for aerogels, from which chord-len
data is obtained.

IV. FITTING INTERSECTION MODELS TO AEROGELS

In the previous section, we defined the intersect
model of two independent isotropic Gaussian random fie
We will loosely follow a method of Roberts12 to fit this
model to the aerogels described in Sec. II. This will be do
using neutron scattering information. Theoretically, the sc
tering intensity is given by37

I ~k!5I 01Vh2E
0

`

4pr 2@S2~r !2f2#
sinkr

kr
dr, ~26!

whereI 0 is background noise,V is the volume of the mate
rial, and h is the scattering density of the solid phase.
principle, given the intensity function, the two-point pha
probability function may be computed using the inverse F
rier sine transformation:

S2~r !5f21
1

2p2Vh2E0

`

@ I ~k!2I 0#k2
sinkr

kr
dk. ~27!

However, in practice, this is problematic sinceI (k) can be
measured only for finitely many wavenumbersk, and these
measurements are subject to experimental error. As a re
there is no guarantee that the autocovariance functionS2(r )
2f2 will satisfy the theoretical requirement of positiv
semidefiniteness.

Instead of using the inversion formula~27!, we attempt
to match the experimentally measured intensity with the
tensity curve predicted for the intersection model using E
~12!, ~21!, and~26!. To determine the constantVh2, we re-
call from scattering theory that the asymptotic form of t
intensity function is given by38

I ~k!;I 01
a

k4
, k→`, ~28!

where the first nontrivial coefficient is given by

a54ph2ncV. ~29!

Therefore,

Vh25
a

4pnc
. ~30!

Sincenc is known for the model via Eq.~20!, it remains to
measure the first nontrivial term of the expansion~28!. This
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may be done by a direct fit of the scattering data; howev
such an approach is hampered by experimental limitatio
Instead, we have chosen to treata as a parameter to be fitted

In summary, we must attempt to match the scatter
data of the aerogels to the model scattering function by
timizing over seven parameters:~i! the covariance function
parametersj, d, and r c , ~ii ! the thresholdsa and b ~or,
equivalently, the volume fractionsfa andfb), ~iii ! the co-
efficient a, and~iv! the background noiseI 0 .

This optimization is performed by minimizing the differ
ence between the scattering data and the GRF model’s
tering function using a least-squares method. Once the
propriate intersection model is found, realizations of t
model may be constructed using the algorithm of Eq.~3! to
determine if in fact the model bears a morphological rese
blance to the aerogel. Furthermore, the chord-length den
function for both phases of the model can be computed
numerically inverting Eqs.~24! and ~25!.

V. RESULTS

Figure 2 is a TEM image of the base-catalyzed TEO
aerogel. A loosely connected microstructure and sphero
shape of the primary particles are evident. This sample is
result of fracture and an ethanol suspension prior to add
to the carbon grid; therefore, the three-dimensional chara
of the bulk aerogel may be somewhat different. Using
algorithm described in the previous section, we find that t
aerogel is best modeled with the parametersj553.744 Å,
r c553.743 Å, d5249.146 Å, fa50.082 43, fb

50.360 14,a50.000 119 28, andI 050.035 031 3.
We now discuss in detail the model used to find t

TEOS data. In Fig. 3, we compare the SANS data for TE
with the intensity curve computed using Eq.~26! and these
seven parameters. As we see, the two curves appear to
good agreement, especially in the important region of la
k. A realization of this model~with dimensions 150031500

FIG. 2. Transmission electron microscopy image of TEOS.
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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3187.5 Å3) is shown in Fig. 4. Most of the ‘‘islands’’ in the
realization are actually connected to the rest of the s
phase outside of the region shown. This model is morp
logically similar to the TEM images of TEOS of Fig. 2.

The chord-length density probability functions for th
two phases are shown in Figs. 5 and 6. We notice that
chords of the solid phase are much shorter than the ch
for the pore phase. We also observe that the chords in
solid phase tend to have lengths between 0 and 30 Å, wi
peak around 20 Å. The averagemi and standard deviationsi

of the chord lengths for both phases may be found thro
the formulas

mi5E
0

`

tpi~ t !dt ~31!

and

FIG. 3. The intensity curve for the intersection model and the experime
scattering data for TEOS.

FIG. 4. A realization of the intersection model for TEOS. The dimension
this realization are 1500315003187.5Å3.
Downloaded 16 Nov 2005 to 129.6.122.161. Redistribution subject to AIP
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t2pi~ t !dtD 2m i
2 . ~32!

Using these equations, we find thatm1528 Å ands1523 Å
for the solid phase, whilem25334 Å ands25345 Å for the
pore phase.

Figure 7 describes the pore size distribution for the ba
catalyzed TEOS sample. The peak fit suggests a Gaus
distribution while additional small peaks may reside in t
60–100 Å regime. In either case, the highest pore volu
exists for peaks of approximately 120 Å. The calculated
erage pore size is 158 Å based on the BJH model.39 This
value compares well electron microscopy images in Fig.

This average pore size is about half the size of the av
age chord length for the pore phase. This is to be expe
from geometrical considerations: the average pore size m
sures the pore phase in all directions simultaneously, w
the average chord length measures the pore phase in a s
direction. For example, for systems of fully penetrab
spheres with 88% porosity, the average distance between
ticles is known analytically to be about 6 times smaller th
the average chord length.28

al

f

FIG. 5. The chord-length probability density functions for both phases
the intersection model for TEOS. For the solid phase, we find thatm1528 Å
ands1523 Å, while m25334 Å ands25345 Å for the pore phase.

FIG. 6. As in Fig. 5 for the pore phase, except for distances up to 1000
 license or copyright, see http://jap.aip.org/jap/copyright.jsp
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In conclusion, this paper has studied intersections
Gaussian random fields as a potential model for aerog
Realizations of this model bear a morphological resembla
to TEOS, and the theoretical intensity curve for the mo
closely matches the experimentally derived intensity cu
for the aerogel. The analytic nature of the model lends its
to statistical testing; in future work, the researchers w
study statistical techniques for validating this approach
modeling aerogels.
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