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Gaussian random field models of aerogels
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A model capable of predicting pore characteristics and rendering representative images of porous
materials is described. A long-term goal is to discriminate between open and closed porosities.
Aerogels are modeled by intersecting excursion sets of two independent Gaussian random fields.
The parameters of these fields are obtained by matching small-angle neutron scattering data with the
scattering function for the model. The chord-length probability density functions are then computed
for the model, which contain partial clustering information for the aerogels. Visualizations of this
model are performed and compared to electron microscopy images and gas adsorption pore size
distributions. © 2003 American Institute of Physic§DOI: 10.1063/1.1563038

I. INTRODUCTION known results about the GRF model. The GRF model used
here will rely on seven parameters; we discuss in Sec. IV the
Small-angle neutron scatteringSANS) is a well-  method by which these parameters are selected. Finally, in

recognized investigative method to characterize materiagec. V, we show our results for the choices of these param-
microstructuré. Many research efforts have employed SANS eters and a three-dimensional realization of the GRF model.
and small-angle x-ray scatterinBAXS) to characterize The chord-length density function for the GRF model is also
aerogel structures. These techniques have been applied faund and compared with the gas-adsorption derived pore
examine a range of length scales and to study changes gize distribution.
structure with respect to processing variabies.
In previous work, the _base—c_atalyzed tetraethoxysilanqel_ EXPERIMENTAL INEORMATION
aerogel system was studied using a polydispersed hard-
sphere modél® However, visualizing realizations of this Aerogels were synthesized from a tetraethoxysilane
model can be problematic at best. Also, clustering informa{TEOS precursor in ethand:1 ethanol/ TEOS ratjcusing
tion about this hard sphere model has yet to be analyticall base catalys0.1N NH,OH [pH = 9.6] in a 4:1 catalyst/
derived since the spheres of this model are not assumed to §&OS ratig, forming a gel in 1 cm diameter vials at 23 °C.
in thermal equilibriunt®* The sample was aged in the solvent for 3 days and super-
This study examines the viability of a Gaussian randongfitically dried in liquid CG. The physical and neutron
field (GRP model for SANS characterization of aerogels. transmission characteristics of the supercritically dried aero-
Previously, variants of the GRF model have been employe69| are noted in Table I. The transmission coefficient has
in the literature to study a variety of material systems, in-Peen calculated as the ratio of sample transmission and

cluding aerogel$? foamed solids® mass and surface €MPty beam transmission. _
fractals! polymer blends® sandstoné® cellular solids!’ Experiments were conducted on the 30-m SANS instru-

tungsten-silver composité8, heather incidenc® and sul- ment on neutron guid_e NG-7 at the NIST Center for Neutron
phide ore€° Here we attempt to match the scattering data ofR€search. Detector distances of 1.2, 4, and 15.3 m were used
aerogels to the scattering function for the GRF model b);o effectively examine a large range of length scales, and 5 A
minimizing over several parameters. Clustering informationneutrons were employed to resolve extremely small length
may then be obtained by computing the chord-length densitycales. _ '

functions for the model. Also, realizations of the GRF model ~ Gas adsorption measurements to determine sample sur-

may be constructed to determine if it in fact bears a morphof@ce area and pore size distribution were conducted on a
logical resemblance to the aerogel. Quantachrome NOVA 2200 using nitrogen as an absorbate.

In Sec. I, we describe the construction of the aerogeIsThe sample microstructure was imaged using transmission

currently under investigation. In Sec. Ill, we list previously €/€ctron microscopyJEOL 100c. Small pieces of aerogel
were crushed, dispersed ultrasonically in ethanol, and ulti-

mately deposited on holey carbon-coated Cu grids.

9 N . .
b)E'IZzggﬂ'lz :‘12": Jr‘;?gfgu”n”ttffu” Other aerogels modeled using this method are base-
9Electronic mail: bgorman@unt.edu cataly.zed tetramethoxy;ilane .samples. These ma'terials.were
9Electronic mail: mueller@unt.edu of varied water to alkoxide ratios, solvent to alkoxide ratios,
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TABLE |. Sample size and neutron transmission coefficient for the SANS o sinkr
scattering experiment. g(r):J 47k%p(k) ” dk. (6)
0 r
Sample Sample Transmission coefficient ] ]
Sample  thickness  density(g/cnt) (sample/empty beam For the three-parameter covariance function of &j, the
TEOS 0.62 cm 0.367 0.76 spectral density is given by
d*[a(&)—a(re)]
p(k)= Tr)c (7)
T2(E—
andpH. The scattering curves for these samples did not dif- ¢
fer markedly, but they do offer an opportunity to study simi- where
lar structures. 4
X
q(x)= G
Ill. MODEL CHARACTERIZATION [d?+x?(kd—2m)?][d*+x*(kd+27)?]

In this section, we define a mathematical model for aero-
gels: the intersection of two excursion sets of independent
Gaussian random fields. We also discuss various microstru®. Two-cut model

ture functions, defined for general random media, which  Tha two-cut model is made by taking a certain excursion

have been explicitly computed for the GRF model. As Weget of 4 Gaussian random field. That is, the solid phase is
will show in Sec. V, this model captures the essential Moryeafined to be all values of which satisfy

phology of aerogels.
a<y(r)<pg ©)

for some thresholdg and 3, while all other values of are

A. Gaussian random fields

We consider isotropic GRRgsso that each valug(r) is ‘aned to th h
a Gaussian random variable with mean 0 and variance £5S'9Nn€d 10 the pore phase.

Such GRFs are completely characterized by the field-field N Magylchharact;terlzatg)tn_s ozthetrr?lclr?strttjtc?:rture of the two-
covariance function cut model have been obtained in the literattfrege summa-

rize them here. First, the volume fractioh of the solid

g(r)={y(0)y(r)), (1 phaseis
){/ivgr;arer =|r|. In this paper, we will use the covariance func- b=bs— b, (10)
where
) e i~ (r./¢&)e e sin(2r/d) @
g(r)= .
1-(r¢/ 27r/d 1 (e 1 1 «a
(refé) i bo=—=| e Rdt=>+ erf=. (11)
This choice of covariance function has three parameters: a N2md — 2 272

E:rcr)lrrelatlon Ien%trf, a”domam ggald,b?n(fjl a .cbglt'?ﬁ'scg:ec .h The definition forgg is similar.
€S€ parameters alow considerabie Texiblity In the Shape  gecong, the two-point phase probability functigs(r)

of g(r), and so Eq(2) has been used frequently in previous is defined to be the probability that two points separated by a

. 12,21,22
modeling work.* _ o __distancer both lie in the solid phase. This is known to be
Many techniques for generating realizations of Gaussm%quaI to
dt a?
exp ———
[1—t2 1+t

random fields in a cube with sidE have been presented in
the literature; see Ref. 23 and references therein. In this pa-
) a—2apft+ B B
y(n= 222 2 CimneXNikpmnr), () —2exy ———— | +exg ——| |.
|I=—N m=—N n=—N 2(1_t2) 1+t

1 ran
per, we use a method which may be efficiently evaluated S,(r)=¢2+ 2—]
mJo
where (12)

using a fast Fourier transform algorithih:

klmn=2_7r(|;(+ m§/+n2). (4) Third, for a line which passes through a random mate-
T rial, let n. be the average number of times per unit length
The random variables,,, are chosen so thatis real and that the line crosses the interface between the pore and solid

isotropic with zero mean. This includes a stipulation that Phases. From stereology, is known to be half of the ma-
5 terial's specific surface. For the two-cut modgl,
a

2
- , 5 2 2
T ) ( ) nC:%[e—a /2+ e—ﬁ /2]’ (13)

1
Var(Recmn) = Var(Im Cimn) = 5 p(Kimn)
where p(k) is the spectral density which depends only on
k=|k|. It can be shown that a random field defined in thiswhere y=+—g”(0). For theparticular choice ofg in Eq.
manner has covariance function given by (2), we have
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A
A typographical error in Eq(48) of Ref. 16 has been cor- W
rected in Eq(13).

Fourth, the surface-void correlation functi®(r) gives
of r so that one point in the solid phase and a second point on ‘
the interface. Rigorous bounds on the fluid permeaBtity

the correlation for finding two points separated by a distance I
and trapping constafftof random materials have been found
which depend on this function. For spherical systeSir)
is a special case of the canonical distribution functibff
For the two-cut modef®
Se(r)=Fpp(r) + (1) —fap(r)—fau(r), (15

where
fab(r) FIG. 1. A schematic depiction of the chords in a random medium. Because
b2/ the chords measure length in a single direction, it is possible to get a large
ye~ / v{a—bg(r)} ) g'(r) chord length through a narrow passageway.
= l+er -
2m V2G(r) 2m\1-g(r)?
a’—2abg(r)+b? D. Chord-length probability density function
Xexp —
2[1-g(r)?] An important characterization of random media is the

chord-length probability density functidh?®=3CIf a line is
a—bg(r) g'(r) drawn through a random materighs schematically illus-
J2G = > (16 trated in Fig. 1, the chords are defined to be the segments
(r) 9(r) entirely in one phase with both end points on the interface.
and We definep,(r) and p,(r) to be the probability density
1 2 , 2 functions of the chord lengths in phases 1 and 2, respectively.
G(n=lrT1-9(N*]-[g'(NT. 1n The chord-length density function provides connected-
A typographical error in Eq(51) of Ref. 16 has been cor- ness information about random materials, albeit in a single
rected. direction. This function is known to be proportional to the
second derivative of the lineal path function or the probabil-
ity of finding a line segment of given length completely
within a certain phase. Both functions thus contain more in-
Many variants of the above excursion set model haveormation tharS,(r), which only requires that the end points
been proposed in the literature. One such variant takes as tla¢ a line segment lie in a certain phase. Furthermore, this
solid phase the intersection of two independently constructedonnectedness information can be used to accurately recon-
two-cut models. Formally, if/,(r) andy,(r) are two inde- struct random materiafé 33
pendent Gaussian random fields, the solid phase is defined to Define
be allr so that

X erf

C. Intersection model

a=ys(=p (o= [ ety ar @3
and to be the Laplace transform of a functidn Roberts and
a<y,(r)<g. (180  Torquato found expressions for the Laplace transforms of the
chord-length functions for both phases. For the intersection

Open-cell microstructures typical of aerogels can be con- . delis
structed using this intersection model, as shown in Sec. V. '

We summarize below known microstructure character- . n —s[éc(s)—séz(s) + ]
izations of the intersection model. We use boldface to distin-  p4(s)= c ~ ~ (24
guish these characterizations with their analogues for the Ne—S[S(S) +5S,(8) — @]
two-cut model: and
¢=d*=(dp— ba)% 19 . .
g . §(9)+s5,(s)- ¢
Ne=2¢nN;, (20) P2(S)= - A : (25)
) Sc(s)=sSy(s) + ¢
Sy(r)=[Sy(r)]%, (21)

Strictly speaking, these expressions are valid if the chord
Sc(r)=2S,(r)S{r). (22 lengths are independent, an assumption that is not valid for
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any GRF model. However, Roberts and Torquato also
showed numerically that the dependence of the chord lengths
minimally affectsp, andp..

To find the original functiong4(r) andp,(r), we will
use a short algorithm discovered by Abate and WHitf.
Based on previous experiente? evaluating the integrals
which determingp;(s) andp,(s) to 10 or 11 decimal places
will produce values op;(r) andp,(r) accurate to roughly 3
or 4 decimal places.

It has been shown thagb,(r) and p,(r) specify the
small-angle scattering intensit§In the next section, we take
up the inverse problem: how to use scattering data to find an
excursion set model for aerogels, from which chord-length
data is obtained.

IV. FITTING INTERSECTION MODELS TO AEROGELS

In the previous section, we defined the intersection
model of two independent isotropic Gaussian random fields.
We will loosely follow a method of Roberts to fit this
model to the aerogels described in Sec. Il. This will be done
using neutron scattering information. Theoretically, the scat-
tering intensity is given by

FIG. 2. Transmission electron microscopy image of TEOS.

may be done by a direct fit of the scattering data; however,
such an approach is hampered by experimental limitations.
Instead, we have chosen to treads a parameter to be fitted.

, , . In summary, we must attempt to match the scattering
wherel, is background noisey is the volume of the mate- 4515 of the aerogels to the model scattering function by op-

rial, and 7 is the scattering density of the solid phase. INgmizing over seven parameter§) the covariance function
principle, given the intensity function, the two-point phaseparametersg, d, andr., (i) the thresholdse and 8 (or,

p_roba}bility function may be computed using the inverse Fou'equivalently, the volume fractions,, and ¢), (iii) the co-
rier sine transformation: efficienta, and(iv) the background noisk,.
1 o sinkr This optimization is performed by minimizing the differ-
S,(r)=¢*+ TJ [I(k)—lo]kzk—dk. (27)  ence between the scattering data and the GRF model’s scat-
2m NV~ Jo ' tering function using a least-squares method. Once the ap-
However, in practice, this is problematic sinbgk) can be  propriate intersection model is found, realizations of the
measured only for finitely many wavenumbégsand these model may be constructed using the algorithm of &).to
measurements are subject to experimental error. As a resuietermine if in fact the model bears a morphological resem-
there is no guarantee that the autocovariance funﬁi@n) blance to the aerogel. Furthermore, the chord—Iength density
— ¢? will satisfy the theoretical requirement of positive function for both phases of the model can be computed by
semidefiniteness. numerically inverting Eqs(24) and (25).
Instead of using the inversion formu(@?7), we attempt
to match the experimentally measured intensity with the in\/. RESULTS
tensity curve predicted for the intersection model using Egs.
(12), (21), and(26). To determine the constaitz?, we re-
call from scattering theory that the asymptotic form of the
intensity function is given b

dr,

sinkr 26
KT (26)

10 =15+ Vor? [ amr,0)- 7

Figure 2 is a TEM image of the base-catalyzed TEOS
aerogel. A loosely connected microstructure and spheroidal
shape of the primary particles are evident. This sample is the
result of fracture and an ethanol suspension prior to adding

a to the carbon grid; therefore, the three-dimensional character
I(k)~lo+ @ k— oo, (28)  of the bulk aerogel may be somewhat different. Using the
algorithm described in the previous section, we find that this
where the first nontrivial coefficient is given by aerogel is best modeled with the paramet&rs53.744 A,
_ 2 r.=53.743 A, d=249.146 A, ¢,=0.08243, ¢
a=amyncV. 29 %5 36014,a=0.000119 28, ant,—0.035031 3. g
Therefore, We now discuss in detail the model used to find the
a TEOS data. In Fig. 3, we compare the SANS data for TEOS
Vyl= ypug (300  with the intensity curve computed using E6) and these
C

Sincen, is known for the model via Eq20), it remains to
measure the first nontrivial term of the expansi{@8). This

seven parameters. As we see, the two curves appear to be in
good agreement, especially in the important region of large
k. A realization of this mode(with dimensions 1508 1500
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FIG. 5. The chord-length probability density functions for both phases of
FIG. 3. The intensity curve for the intersection model and the experimentajhe intersection model for TEOS. For the solid phase, we findghat28 A
scattering data for TEOS. ando;=23 A, while u,=334 A ando,=345 A for the pore phase.

% 187.5 A%) is shown in Fig. 4. Most of the “islands” in the
realization are actually connected to the rest of the solid 2_ f“ 2 2

= tpi(t)dt | —ui . 32
phase outside of the region shown. This model is morpho- i ( 0 Pict ) Hi (32

logically similar to the TEM images of TEOS of Fig. 2. Using these equations, we find thag=28 A ande, =23 A

The chord-length density probability functions for the . T _
two phases are shown in Figs. 5 and 6. We notice that hir the solid phase, whilgr,= 334 A ando,=345 A for the

: ore phase.
chords of the solid phase are much shorter than the c_hor(Ps Figure 7 describes the pore size distribution for the base-
for the pore phase. We also observe that the chords in the . .
. .., catalyzed TEOS sample. The peak fit suggests a Gaussian
solid phase tend to have lengths between 0 and 30 A, with g "~ . . .
L istribution while additional small peaks may reside in the
peak around 20 A. The average and standard deviatioa; 6

0-100 A regime. In either case, the highest pore volume
?r:etr;grr?]huolgi lengths for both phases may be found througréxists for peaks of approximately 120 A. The calculated av-

erage pore size is 158 A based on the BJH mdd@his
w value compares well electron microscopy images in Fig. 2.
M= J'o tpi(t)dt (32) This average pore size is about half the size of the aver-
age chord length for the pore phase. This is to be expected
and from geometrical considerations: the average pore size mea-
sures the pore phase in all directions simultaneously, while
the average chord length measures the pore phase in a single
direction. For example, for systems of fully penetrable
spheres with 88% porosity, the average distance between par-
ticles is known analytically to be about 6 times smaller than
the average chord lengtf.

0.0 p——T—— T T T
o 00031 —
=]
=
2
a
3 0.002|- -
=
T
=
© 0001} -
ol v 1 e e e
0 200 400 600 800 1000
. i . . i i Distance
FIG. 4. Arealization of the intersection model for TEOS. The dimensions of
this realization are 15001500x 187.5A%. FIG. 6. As in Fig. 5 for the pore phase, except for distances up to 1000 A.
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